首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A range of biological traits of nematode species were combined to identify patterns in the functional composition of their assemblages collected at 19 soft-bottom stations in the southwestern North Sea with the primary aim to determine which environmental variables control communities. We used 19 categories of five biological traits thought or known to represent an important ecological function. These were related to buccal morphology, tail shape, body size, body shape and life history strategy. Data on trait membership was provided by biological information on species and genera. A total of 79 different trait combinations were recorded. Results from correlation analyses revealed several significant relationships between traits. Some trait combinations were shared by different species and genera, and the ratio of realised versus total number of possible trait combinations of < 1 suggested that some trait combinations were not represented by the nematode fauna from this region. The functional composition of nematodes was strongly linked to median particle diameter and silt content of the sediment and water depth. The approach adopted and our attempts at defining and analysing functional attributes of nematode communities raised a number of conceptual and methodological issues which are discussed.  相似文献   

2.
The interest in fishing‐induced life‐history evolution has been growing in the last decade, in part because of the increasing number of studies suggesting evolutionary changes in life‐history traits, and the potential ecological and economic consequences these changes may have. Among the traits that could evolve in response to fishing, growth has lately received attention. However, critical reading of the literature on growth evolution in fish reveals conceptual confusion about the nature of ‘growth’ itself as an evolving trait, and about the different ways fishing can affect growth and size‐at‐age of fish, both on ecological and on evolutionary time‐scales. It is important to separate the advantages of being big and the costs of growing to a large size, particularly when studying life‐history evolution. In this review, we explore the selection pressures on growth and the resultant evolution of growth from a mechanistic viewpoint. We define important concepts and outline the processes that must be accounted for before observed phenotypic changes can be ascribed to growth evolution. When listing traits that could be traded‐off with growth rate, we group the mechanisms into those affecting resource acquisition and those governing resource allocation. We summarize potential effects of fishing on traits related to growth and discuss methods for detecting evolution of growth. We also challenge the prevailing expectation that fishing‐induced evolution should always lead to slower growth.  相似文献   

3.
Organisms adopt different sets of physiological, behavioural and morphological trade-offs in order to cope with natural environmental fluctuations. This has consequential rebounds on ecological processes and population dynamics. Such aspects become crucial for sex-dimorphic species, where sex-specific growth variation could mirror different tactics both in energy acquisition and investment between maximum female and male body size with cascading effects on population demography. To date, different approaches have been used in order to understand the causes of individual growth rate changes in ectotherm indeterminate growers, most of which failed. Here, we propose the use of a mechanistic model based on the Dynamic Energy Budget theory (DEB; Koojiman, 2010) to investigate potential differences in energy allocation strategies adopted by individuals of different genders with the Mediterranean toothcarp Aphanius fasciatus (Valenciennes, 1821) as the model species. We collected literature and field data in order to study differences in energy allocation strategies between females and males of the same species by generating projections of possible growth performances: (1) throughout their entire life span and (2) under a context of varying functional responses. Generally, the present exercise of simulations returned different patterns of growth performance among females and males of A. fasciatus, with the former being able to better optimize energetic trade-offs under optimal environmental conditions. The present DEB parameterization exercise represents an essential step towards developing a mechanistic approach to depict metabolic strategies, which are at the base of observed sexual differences, and how such differences may impair ultimate fitness at individual and, therefore, population levels.  相似文献   

4.
This study investigated the community structure and functional traits of the mollusk fauna associated with macroalgae with different thallus morphologies in a reef environment in Northeastern Brazil. A total of 15 individuals of each species of macroalgae adhered to natural substrate and 15 individuals of Padina gymnospora detached from the substrate were collected. The structural complexity of algal habitats was measured and the associated malacofauna screened and identified. All three macroalgae differed significantly in the complexity of their habitat, with Sargassum polyceratium being the most complex. A total of 823 specimens of mollusks belonging to 22 species and 11 families were recorded, of which Columbellidae was the most represented with six species. The functional trait “size” revealed that micromollusks smaller than 10 millimeters were predominant in the community; however, individuals of larger sizes (up to 24.54 millimeters) belonging to young stages of other species were also present. Eight functional trophic groups were identified, of which “carnivorous” stood out with seven species. Six functional groups of microhabitats were identified, with intra‐specific variation in habitats, while habitat expansion was documented for species not yet recorded in association with macroalgae. The structure of the molluskan community differed among the three algae species with the greatest richness, abundance, and diversity of mollusks and functional traits occurring with S. polyceratium. Community structure differed between algae adhered to natural substrate and detached algae, with the latter having lower mollusk richness and diversity, but with greater abundance of some species that remained on algal fronds after release from the reef environment. This study reinforces the importance of algal habitat for marine invertebrate fauna, especially for micromollusks that spend their entire life cycle, or part of it, in association with macroalgae.  相似文献   

5.
The European Research Project AquaDEB (2007–2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from the individual level up to the level of evolutionary processes.  相似文献   

6.
The relationship of functional diversity and composition was studied in gradients of organically enriched sediments from four Mediterranean fish farms. Within-functional trait diversity was also used to examine the functional redundancy of specific functional traits. Characteristics considered to respond to different geochemical conditions of the sediment were chosen for the traits list of that organism and were classified into ecological and morphological traits. Each trait was split up into several categories chosen to encompass the range of possible attributes of all species. The abundance of species possessing the same code was summed for each sample. Functional codes analyses differentiated between the sediment types and the TOC states, confirming the sensitivity of the functional characteristics to the geochemistry of the sediment. Changes in species number and abundance in the compared sites determined the shifts of the functional processes and not the presence or absence of individual traits. The important functional codes for the homogeneity within the examined habitats were fewer in the disturbed areas indicating that the functioning of these ecosystems is significantly reduced.  相似文献   

7.
Biological Traits Analysis (BTA) is a method for addressing ecological functioning based on traits exhibited by members of biological assemblages. This study explores and compares species and biological trait patterns on either side (landward and seaward) of coastal breakwater structures in northwestern Adriatic Sea (Italy), with the aim of giving insights and knowledge for management of sandy beach systems affected by coastal development. Eight ecological traits of 96 benthic species were considered. Taxon composition evidenced differences in benthic assemblages across time and exposure: landward and seaward communities shared less than 50% of the total number of species. BTA suggested a no-management effect in the functioning of benthic assemblages. Dominant traits modalities were deposit-feeding, short life, small body size, short life span, iteroparity, gonocorism, with plankto-planktotrophic larvae. The results of BTA highlighted similarities and stability in trait composition contrary to species composition, suggesting a possible persistence in benthic functioning despite the occurrence of species replacements. To best of my knowledge, this study is one of the first attempts to investigate the effects of a management measure (submerged shore-parallel barriers with groynes) in a shallow marine system by means of BTA.  相似文献   

8.
Three fish species, anchovy, hake and lanternfish, occupy different habitats in the neritic zone of the Benguela Current ecosystem. Compatibility between the predicted environmental variability in each habitat and the collection of life history traits found in each species is examined with simulation models. Variability in early-stage survival is introduced into the models by means of both random and non-random ("red") spectra. Traits exhibited by lanternfish are shown to be inefficient in filtering out random variability and the species therefore cannot prevent collapse in a non-randomly variable environment. By comparison, the traits found in anchovy and hake filter out part of both random and non-random variability in survival and allow a fairly stable population size to be maintained. It is argued that, as life-history traits are adapted to the spectrum of variability associated with the habitat, only anomalies with respect to this spectrum are likely to have a large influence on stock size.  相似文献   

9.
10.
We examined the variation in habitat use and diet of three dominant fish species (Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.  相似文献   

11.
Mangrove macrobenthos species are used as ecological indicators as they are sensitive to changes in sediment properties. In this study, the population density of the common mangrove whelk Cerithidea decollata was assessed during different environmental conditions in the St Lucia Estuary, South Africa. Previously, this species was found to persist through both hypersaline and freshwater-dominated conditions. The natural variability in C. decollata populations could provide information on the potential for this widespread species to be used as an ecological indicator in mangroves. We found that snail population density as well as sediment conductivity, moisture content and organic content differed between three mangrove sites that were monitored between 2010 and 2015. The relationship between snail population density and physicochemical characteristics of the sediment was therefore investigated using a mixed-effects model, and sediment conductivity was found to be the best predictor of C. decollata abundance. The resistance of this species to environmental variability could inform on resilience to ecological shifts, which is important when measuring responses associated with climate change.  相似文献   

12.
Due to the presence of the complex life cycles involving a benthic adult and a pelagic larval phase, the study of benthic community dynamics cannot ignore investigations of the processes occurring in the water column. Current investigations focus mainly on larval dispersal from an evolutionary and a biogeographic perspective, taking into account also population connectivity, conservation planning and coastal management. In the present paper we underline the need to improve knowledge of the main traits of marine invertebrate life cycles, highlighting the limits and challenges of current approaches. Firstly, we summarized the changing approaches within community studies, following the paradigm shifts found in recent marine ecological research, from supply‐side ecology to connectivity, and involving the concepts of open and closed populations. Secondly, we analysed the main larval traits influencing dispersal, paying particular attention to pelagic larval duration in light of the few available data for connectivity studies. The difficulty in estimating many of the main traits of larval ecology make numerical simulation fundamental for a better understanding of the relationship between propagule dispersal and seawater dynamics, both being highly variable. We conclude that some essential biological information is still lacking for the proper integration of the modeling approaches. Thus it is necessary to further investigate the life‐cycle traits and physiological and ecological characteristics of each species, an approach known as autecology or natural history. All too frequently modern ecologists ignore such reductionist approaches, although they are essential for a full understanding of processes, such as connectivity and metapopulation dynamics.  相似文献   

13.
The level of parental investment for larval nutrition may determine the life cycle in marine invertebrate species laying egg masses or capsules, where the food available for enclosed individuals would determine time and developmental stage of hatching. Most species show a unique type of larval development. However, few species are poecilogonous and combine more than one development type. Poecilogony, although scarcely studied, allows comparing different patterns of parental reproductive investment, without the phylogenetic effect of the species ancestral modes of development (phylogenetic inertia), to help to understand the factors determining life strategy evolution in marine invertebrates. The poecilogonous polychaete worm Boccardia wellingtonensis encapsulates and incubates its offspring, which then hatches as either planktotrophic larvae or benthic juveniles; while Boccardia chilensis shows a non-poecilogonous reproductive type, producing only planktotrophic larvae. In this work, we estimated the bioenergetic and biochemical composition of brooding and non-brooding females of B. wellingtonensis and B. chilensis to compare the costs of reproduction in these two species. Results showed that glucose, protein, lipid, and energy content were significantly higher in non-brooding than in brooding females of B. wellingtonensis; but also contained significantly more glucose, protein, and lipid than females of B. chilensis (in absolute and relative dry weight values). The poecilogonous species showed higher energy content previous to laying offspring. Our results support the idea that the evolution of a certain reproductive and life history traits in marine invertebrates is related to adaptations in the female's reproductive investment.  相似文献   

14.
The study investigates the effect of the salinity gradient on the functional composition, functional diversity and functional redundancy of soft-bottom communities in the south-western Baltic Sea. For this purpose, three different areas were selected and compared using a biological trait approach. Functional diversity was calculated by using Rao's Quadratic Entropy as a measure and functional redundancy by the ratio between functional and species diversity.Despite a high variability due to different other occurring environmental gradients, a clear shift in functional composition was visible using the BTA approach. The changes were most distinct for the traits, longevity and larvae type if the analyses were based on the biomass of the species, whereas abundance-based analyses tend to show less clear results.Along the same gradient, functional diversity and functional redundancy tended to increase if biomass data were used in the analysis. On the other hand no changes could be observed in the functional diversity when the abundance of the species was used.The result of the BTA showed a trend from long-lived and highly specialised species towards short-lived ubiquitous species with decreasing salinity. However, dominance of ubiquitous species in brackish waters seems to buffer the functional loss. Therefore it can be followed that by gaining functional redundancy the robustness of the benthic ecosystem to environmental changes increases.  相似文献   

15.
Predicting the ability of the biosphere to continue to deliver ecosystem services in the face of biodiversity loss and environmental change is a major challenge. The results of short‐term and small‐scale experimental studies are both equivocal and difficult to extrapolate from. In this study we use data on benthic palaeocommunities covering 4,000,000 years (in the Late Jurassic when temperate coastal seas in NW Europe experienced fluctuations in oxygenation). The biological traits associated with each species in the palaeocommunities were combined to index the delivery of ecological functions. Five ecosystem functions were examined: food for large mobile predators, biogenic habitat provision, nutrient recycling/regeneration, inorganic carbon sequestration and food‐web dynamics. In modern systems these ecological functions underpin ecosystem services that are important for human well‐being. Our results show that the supply of food for higher predators was remarkably constant during the 4,000,000 years, suggesting that redundancy amongst species in the assemblage drives the biodiversity–ecosystem function (BEF) relationship. By contrast, the provision of biogenic habitat varied with the occurrence of a relatively few taxa, a pattern consistent with a rivet type model of BEF. For nutrient regeneration, carbon sequestration and food‐web dynamics the patterns were complex and suggestive of an idiosyncratic model of BEF. To our knowledge this is the first study to quantify ecological functioning through deep time and demonstrates the utility of this approach to understanding long‐term patterns of BEF in both ancient and contemporary marine ecosystems. The delivery of all five ecological functions studied became increasingly variable as the regional climate became drier, thus modifying the supply of terrigenous nutrient inputs.  相似文献   

16.
The extreme environmental variability of coastal lagoons suggests that physical and ecological factors could contribute to the genetic divergence among populations occurring in lagoon and open‐coast environments. In this study we analysed the genetic variability of lagoon and marine samples of the sand goby, Pomatoschistus marmoratus (Risso, 1810) (Pisces: Gobiidae), on the SW Spain coast. A fragment of mitochondrial DNA control region (570 bp) was sequenced for 196 individuals collected in five localities: Lo Pagan, Los Urrutias and Playa Honda (Mar Menor coastal lagoon), and Veneziola and Mazarrón (Mediterranean Sea). The total haplotype diversity was h = 0.9424 ± 0.0229, and the total nucleotide diversity was π = 0.0108 ± 0.0058. Among‐sample genetic differentiation was not significant and small‐scale patterns in the distribution of haplotypes were not apparent. Gene flow and dispersal‐related life history traits may account for low genetic structure at a small spatial scale. The high genetic diversity found in P. marmoratus increases its potential to adapt to changing conditions of the Mar Menor coastal lagoon.  相似文献   

17.
Functional groups have become an important tool for characterizing communities of marine and estuarine environments. Their use also holds promise for a better understanding of the temporal dynamics of phytoplankton. This study aimed to evaluate the contributions of phytoplankton size fractions and functional groups characterizing short‐term variation throughout tidal cycles and between dry and rainy seasons in a tropical estuarine system. Camamu Bay is an oligotrophic estuarine system that is under strong influence from tropical shelf waters and is characterized by high salinity and low concentrations of dissolved nutrients. Surface‐water samples were collected at nine sampling sites distributed among the three hydrodynamic regions of the bay, and at a mooring, at 3‐hr intervals during tidal cycles (12 hr each) in both the rainy and the dry season. Although the abundances of the phytoplankton fractions (pico‐, nano‐, and micro‐) were higher in the rainy season and during periods of higher tide, they were not significantly higher. The phytoplankton community in the bay comprises three functional groups: GI = “colonial” (i.e., chain‐forming diatoms and filamentous cyanobacteria); GII = “GALD >40” (i.e., pennate and centric diatoms with MDL >40 µm), and GIII = “flagellates” (i.e., species with motility via flagella). Nanoflagellates were the most abundant form in the bay, while chain‐forming diatoms, in particular, contributed to the microphytoplankton fraction during both the rainy and dry seasons. Functional groups, as defined by cluster analysis, reflected ecological strategies compatible with the high hydrodynamics of Camamu Bay, which is characterized by processes of tidal‐forced intense mixing, mainly during periods of spring tides. The phytoplankton of the bay was found to possess a series of attributes (functional traits) that endow them with some resistance to sinking. Functional diversity indexes (FEve, FDiv, and FDis) indicated a stable community without significant short‐term variation due to low variability in the environmental conditions of the system during the study period.  相似文献   

18.
One of the main challenges to facilitate the classification of water bodies is to identify direct relationships between anthropogenic pressures and the behavior of biological organisms such as macrophytes in different environments including transitional areas. The investigation of many lagoons and ponds described here shows that macrophyte variables and the community composition have strong and univocal relationships with ecological parameters that are a measure of anthropogenic pressure on the ecological status of water bodies. The areas surveyed represent about 78% of the Italian transitional waters (169 sites sampled both in spring and fall). Anthropogenic impacts affect the availability of nutrients in the water column and surface sediments, causing changes in water transparency and phytoplankton concentration (as chlorophyll‐a [Chl‐a]) that act as the main drivers of variation for macrophyte assemblages, changing species dominance and the conditions that govern their presence or absence. The response of macrophytes to anthropogenic pressure is quite similar in all the examined transitional environments, even when the basin morphology, species richness and composition are different. Some taxa and species assemblages are so sensitive to environmental changes that monitoring them can be considered the most suitable and rapid method for assessing the quality of the environment they inhabit.  相似文献   

19.
Understanding the factors that cause population divergence has long been of interest to marine biologists in their attempts to interpret the effect of human‐mediated vectors. Broadcast‐spawning species with limited dispersal capability are excellent candidates to measure the present‐day patterns of genetic diversity. The tunicate Ciona intestinalis (Ascidiacea) is comprised of a complex of morphologically cryptic species that form vigorous aggregates in eutrophic habitats (harbors, gulfs and lagoons) where they can compete with the epibenthic community and cause biofouling problems. This study investigated biogeographic variability and migration patterns of C. intestinalis sp. A along Northeast Atlantic and Mediterranean coasts using microsatellite markers. Data presented here on 371 specimens collected from 17 populations reveal high genetic polymorphism, but with a deficit of heterozygote deficiency. Absence of evidence for isolation by distance suggests that the genetic patterns do not reflect the geographic distribution of sampled populations. Substantial gene flow and artificial potential for dispersal boost high levels of within‐population genetic variability and prevent genetic differentiation within and between seas. A predominant eastward migration pattern was revealed by the data set, with very limited opportunity for C. intestinalis sp. A to travel westward. This directional movement indicates that other properties (e.g. habitat quality, genetic traits, mating system, life cycle) may cause adaptive divergence at a large biogeographic scale.  相似文献   

20.
半滑舌鳎是重要的经济鱼类,已经被广泛推广养殖,致力于养殖方面的研究开展了很多工作,但是对半滑舌鳎生长性状进行准确遗传评估的研究还未见报道。为了对生长性状进行准确的遗传参数估计,本次研究以80个半滑舌鳎家系为研究对象,对半滑舌鳎早期生长性状(包括个体全长、体宽和体质量)进行分析。另外还将鱼体底面纯白与否(命名为底面颜色)作为一个性状进行研究。结果表明,四个性状都属于中等遗传力(全长为0.210、体宽为0.259、体质量为0.268、底面颜色为0.362)。三个生长性状之间具有很高的遗传相关性(0.913-0.959),表明如果三个性状进行间接选择的话,将会取得较好效果。底面颜色性状与三个生长性状均为正遗传相关,相关系数在0.241-0.353之间,由此可知,对底面颜色进行选择时,可以加强生长性状的选择效果。通过家系育种值排序,初步筛选出了生长性状优良遗传背景丰富的16个全同胞家系,将作为亲鱼繁殖后代。本研究为半滑舌鳎优良品种的成功培育提供了重要基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号