首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this interview, John Wasson (Fig.  1 ) describes his childhood and undergraduate years in Arkansas and his desire to pursue nuclear chemistry as a graduate student at MIT. Upon graduation, John spent time in Munich (Technische Hochschule), the Air Force Labs in Cambridge, MA, and a sabbatical at the University of Bern where he developed his interests in meteorites. Upon obtaining his faculty position at UCLA, John established a neutron activation laboratory and began a long series of projects on the bulk compositions of iron meteorites and chondrites. He developed the chemical classification scheme for iron meteorites, gathered a huge set of iron meteorite compositional data with resultant insights into their formation, and documented the refractory and moderately volatile element trends that characterize the chondrites and chondrules. He also spent several years studying field relations and compositions of layered tektites from Southeast Asia, proposing an origin by radiant heating from a mega‐Tunguska explosion. Recently, John has explored oxygen isotope patterns in meteorites and their constituents believing the oxygen isotope results to be some of the most important discoveries in cosmochemistry. John also describes the role of postdoctoral colleagues and their important work, his efforts in the reorganization and modernization of the Meteoritical Society, his contributions in reshaping the journal Meteoritics, and how, with UCLA colleagues, he organized two meetings of the society. John Wasson earned the Leonard Medal of the Meteoritical Society in 1992 and the J. Lawrence Smith Medal of the National Academy in 2003.
Figure 1 Open in figure viewer PowerPoint John T. Wasson.
  • DS
  • John, thank you for letting me document your oral history. Let us start with my normal opening question, how did you get interested in meteorites?
  • JW
  • My Ph.D. research was in nuclear chemistry at MIT. Until late in my studies I thought I could be a nuclear chemist using the classical scientific method. That is, you gather data on a topic that seems interesting, you look for patterns in the data, and you write an interpretative paper that explains the data. I had learned, though, by going to Gordon Conferences, that this was not the way nuclear chemistry was being done. Nuclear chemists measured gamma ray energies as accurately as they could, they tried to fit these into energy levels diagrams, and then the nuclear physicists took over and interpreted the data. The nuclear physicists looked for the patterns in the energy‐level diagrams and made the models. That was not what I had in mind. But while I was at MIT, I heard lectures by Harold Urey, Hans Suess, and James Arnold. These were people whose backgrounds were not that different from mine and all three extolled the virtues of working on meteorites, and how you could learn neat things about how the solar system worked. That's a strength of MIT, exposure to neat ideas, and I credit the institution for doing this. So that was it. I was hooked.
  • DS
  • You have talked to us about how you became interested in meteorites, let's go back and talk about your precollege years.
  •   相似文献   

    2.
    3.
    The scientific rationale of the ROY multi-satellite mission addresses multiscale investigations of plasma processes in the key magnetospheric regions with strong plasma gradients, turbulence and magnetic field annihilation in the range from electron inertial length to MHD scales.The main scientific aims of ROY mission include explorations of:
    (a)
    turbulence on a non-uniform background as a keystone for transport processes;
    (b)
    structures and jets in plasma flows associated with anomalously large concentration of kinetic energy; their impact on the energy balance and boundary formation;
    (c)
    transport barriers: plasma separation and mixing, Alfvenic collapse of magnetic field lines and turbulent dissipation of kinetic energy;
    (d)
    self-organized versus forced reconnection of magnetic field lines;
    (e)
    collisionless shocks, plasma discontinuities and associated particle acceleration processes.
    In the case of autonomous operation, 4 mobile spacecrafts of about 200 kg mass with 60 kg payload equipped with electro-reactive plasma engines will provide 3D measurements at the scales of 100-10000 km and simultaneous 1D measurements at the scales 10-1000 km. The latter smaller scales will be scanned with the use of radio-tomography (phase-shift density measurements within the cone composed of 1 emitting and 3 receiving spacecrafts).We also discuss different opportunities for extra measurement points inside the ROY mission for simultaneous measurements at up to 3 scales for the common international fleet.Combined influence of intermittent turbulence and reconnection on the geomagnetic tail and on the nonlinear dynamics of boundary layers will be explored in situ with fast techniques including particle devices under development, providing plasma moments down to 30 ms resolution.We propose different options for joint measurements in conjunction with the SCOPE and other missions:
    simultaneous sampling of low- and high-latitudes magnetopause, bow shock and geomagnetic tail at the same local time;
    tracing of magnetosheath streamlines from the bow shock to near-Earth geomagnetic tail;
    passing “through” the SCOPE on the inbound orbit leg;
    common measurements (with SCOPE and other equatorial spacecraft) at distances of ∼ few thousand km for durations of ∼several hours per orbit.
    The orbit options and scientific payload of possible common interest are discussed in this work, including FREGAT cargo opportunities for extra payload launching and the “Swarm” campaigns with ejection of nano- and pico-satellites.  相似文献   

    4.
    It is shown that, at temperatures far below the triple point and under appropriate conditions, liquid water can stably or temporarily exist in upper ice-covered surfaces of planetary bodies (like Mars) in three different types:
    (i)
    undercooled interfacial water (due to freezing point depression by van der Waals forces and “premelting”),
    (ii)
    water in brines (due to freezing point depression in solutions), and
    (iii)
    sub-surface melt water (due to a solid-state greenhouse effect driven heating).
    The physics behind and the related conditions for these liquid waters to evolve and to exist, and possibly related consequences, are discussed. These calculations are mainly made in view of the possible presence of these sub-surface liquids in the upper surface of the present Mars.  相似文献   

    5.
    Three methods permitting to characterize space and onboard spacecraft radiation environment have been developed and/or upgraded in our laboratories: MDU equipment with a semiconductor detector as sensitive element devoted to register energy deposition spectra in the Si-diode; a spectrometer of the linear energy transfer (LET) based on chemically etched polyallyldiglycolcarbonate (PADC) track etch detectors (TED); and thermoluminescent detectors (TLDs) with different dependences of relative TL yield on the LET of particles transferring their energy in them.We have used all these types of dosimetry equipments onboard spacecrafts since several years and succeeded to treat directly read data in terms of both quantitative and qualitative dosimetry characteristics and deduce from them related radiation risk.During last few years all these three types of detectors have been intensely studied to understand still better their possibilities to characterize space radiation fields. Particularly:
    1.
    Both PADC TED LET spectrometer and TLDs have been exposed in heavier ion beams with LET in water ranging from 1 to about 700 keV/μm with the goal to upgrade their calibration curves;
    2.
    A new method of MDU directly read data has been developed, permitting to measure not only dose in Si-detector, but also to estimate radiation protection quantities and the neutron contribution to the onboard exposure level;
    3.
    All three methods have been tested onboard spacecrafts during several missions.
    Contribution presents, analyses and discusses the results obtained in items 1-3 and, also, the possibilities of these detectors to help in characterizing radiation fields during longer space missions, above 1 year.  相似文献   

    6.
    7.
    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts’ scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows:
    (1)
    LDP#1: Provide multiple experiences: varied field science activities will hone astronauts’ abilities to adapt to novel scientific opportunities
    (2)
    LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery
    (3)
    LDP#3: Provide a relevant experience—the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning
    (4)
    LDP#4: Provide a social learning experience—the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts’ abilities to think and perform like a field scientist.
    The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.  相似文献   

    8.
    Hydrogen is the most abundant element in the universe. Molecular hydrogen is the dominant chemical species in the atmospheres of the giant planets. Because of their low masses, neutral and ionized hydrogen atoms are the dominant species in the high atmospheres of many planets. Finally, protons are the principal heavy component of the solar wind.Here we present a critical evaluation of the current state of understanding of the chemical reaction rates and collision cross sections for several important hydrogen collision processes in planetary atmospheres, ionospheres, and magnetospheres. Accurate ab initio quantum theory will play an important role. The collision processes are grouped as follows:
    (a)
    H++H charge transfer,
    (b)
    H++H2(v) charge transfer and vibrational relaxation, and
    (c)
    H2(v,J)+H2 vibrational, rotational, and ortho-para relaxation.
    In each case we provide explicit representations as tabulations or compact formulas. Particularly important conclusions are that H++H2(v) collisions are more likely to result in vibrational relaxation than charge transfer and H2 ortho-para conversion is at least an order-of-magnitude faster than previously assumed.  相似文献   

    9.
    R.J. Soare  J.S. Kargel  F. Costard 《Icarus》2007,191(1):95-112
    We have identified a number of gullies that could be aqueous in origin near or at the rim of several impact craters in Utopia Planitia and western Elysium Planitia (30.0°-59.0° N; 241.0°-291.0° W). Based on the sharpness of their incisions and the general absence of superposed craters, we ascribe a relatively recent origin to the gullies. Scalloped depressions are commonplace throughout the region, as well as on the crater walls, rims and floors near the areas of gully issuance. Occasionally, the depressions cross-cut the gully debris-aprons, suggesting that the formation of some depressions is even more recent than that of the gullies. Previous research has proposed that the depressions are collapse basins formed by thermokarst processes. On Earth, thermokarst landforms occur in areas of low gradient topography where the permanently frozen ground (permafrost) is ice rich and has undergone a change in thermal equilibrium. This change can be triggered by long-term or episodic/cyclic climate change and accompanying rises in mean temperatures towards ∼0 °C as well as by rises in seasonally sustained summer temperatures well above ∼0 °C. In order to explain the origin of the rim or near-rim gullies we invoke high obliquity and the possibility that this region of Mars experienced obliquity-driven rises in temperature, atmospheric pressure and humidity sufficient to keep surface water and near-surface ground-ice stable for extended periods of time. We propose that gully formation is closely related to local freeze-thaw processes that, in turn, generate a thermokarst landscape (of which the gullies are a part). This geological and climatological scenario comprises the following steps:
    1.
    An inundation of meltwater at high obliquity (due to the thawing of an atmospherically-deposited snowpack or ice-sheet) and the subsequent saturation of the underlying regolith to tens of metres of depth.
    2.
    Loss of water on the surface, perhaps as obliquity decreases slightly, followed by the progressive freezing of the saturated regolith; this creates an aggrading mass of ice-rich regolith.
    3.
    Obliquity-induced temperature rises that engender the thaw, drainage and partial evaporation of the near-surface, ice-rich regolith.
    4.
    Localised formation of thermokarst collapse-basins (alases), as water is evacuated from these basins.
    5.
    Formation of gullies near, or at, some impact-crater rims as the result of meltwater migration from nearby alases through the thawed regolith to the areas of gully issuance.
    Although the plains' materials in this region are in part very old (possibly Hesperian or even Noachian), the mantling deposits and their deformation by thermokarst processes appears to be relatively young. This suggests that recent climatic conditions could have been episodically warmer and wetter than had been previously thought.  相似文献   

    10.
    11.
    12.
    13.
    This paper presents a computer investigation extending to the case of parabolic orbits, an earlier investigation conducted by Barricelli and Metcalfe (1969) on lunar impacts by external low eccentricity satellites as a means to interpret the asymmetric distribution of lunar maria. Parabolic orbits can be approximated by two kinds of objects:
    1. High eccentricity external satellites may, near periapsis, approach the Moon with orbital velocity and other characteristics closely resembling those of a parabolic orbit.
    2. Asteroids and meteoroids approaching the Earth-Moon system with a low velocity may have moved in a nearly parabolic orbit when they reached the lunar distance from the Earth at the time when the impacts which carved the lunar maria took place.
    The investigation gives, therefore, not only additional information relevant to the interpretation of the distribution of lunar maria by the satellite impacts hypothesis (in this case high eccentricity ones), but also information about the alternative hypothesis (Wood, 1973) that asteroid impacts rather than satellite impacts were involved.  相似文献   

    14.
    Uwe Fink 《Icarus》2009,201(1):311-334
    A summary is presented of our spectroscopic survey of comets extending for roughly 19 years from 1985 to 2004 comprising data for 92 comets of which 50 showed good emissions. All data were re-analyzed using consistent reduction techniques. Our observations of comets over several apparitions and comets observed over an extended period indicate no major changes in compositional classification. To our regret, no major unidentified cometary features were found in our surveyed spectral region of 5200-10400 Å. Absolute production rates for the dominant parent molecule H2O and the daughter species C2, NH2 and CN are determined within the limits of the Haser model as are values for the dust continuum, Afρ. From these data, production rate ratios are calculated for C2/H2O, NH2/H2O, CN/H2O and Afρ/H2O. Excluding the odd Comets Yanaka (1988r), 43P/Wolf-Harrington and 19P/Borrelly, with unusual spectra, our set of comets exhibited relatively uniform composition. Detailed analyses of our data resulted in four taxonomic classes:
    -
    Comets of typical composition (∼70%); exhibiting typical ratios with respect to water of C2, NH2, and CN.
    -
    Tempel 1 type (∼22%); having a deficiency in C2 but normal NH2 abundance.
    -
    G-Z type (∼6%); having both low C2 and NH2 ratios.
    -
    The unusual object Yanaka (1988r) (∼2%?); no detectable C2 or CN emission but normal NH2.
    It is uncertain whether there is a clear separation between the comets of typical composition and those with C2 depletion, or whether the latter consists of a group showing a continuum of decreasing C2/CN ratios. Our spectroscopic investigations result in a visual record of the various compositional classes, which are illustrated in a number of figures. Production rate comparisons with the comet photometry program of Schleicher and A'Hearn [A'Hearn, M.F., and 4 colleagues, 1995. Icarus 118, 223-270] for 13 comets in common yielded good agreement once the different scale lengths are taken into account. An investigation into the possible origin of our compositional groups with respect to dynamical families of comets shows that the Halley family exhibits essentially no C2 depletion. These objects were presumably formed in the region of Saturn and Uranus and scattered into the Oort cloud. Comets formed in the space near Neptune, responsible for the scattered Kuiper Belt show a mixture of “typical” and C2 depleted objects, while we associate comets formed in-situ in the classical Kuiper belt with our C2 depleted group.  相似文献   

    15.
    16.
    17.
    18.
    High‐temperature solid‐state electrochemistry techniques (EMF method) were used to measure the oxygen fugacity (fO2) of the ordinary chondrites Ochansk (H4), Savtschenskoje (LL4), Elenovka (L5), Vengerovo (H5), and Kharkov (L6). The fO2 results are presented in the form of the following equations: It was found that fO2 regularly increases from H chondrites to LL chondrites. Measured fO2 are ~1.5 higher than those previously calculated from mineral assemblages. Kharkov (L6) is a little more oxidized than Elenovka (L5) in agreement with the progressive oxidation model. At the same time, Ochansk (H4) is more oxidized than Vengerovo (H5) and exhibits a slightly different slope compared to other chondrites and at > 1200 K, becomes more reduced than Kharkov (L6) or Elenovka (L5). Measured oxygen fugacity values of meteorites fall within (0.1–1.0)·log fO2 of one another. The possible explanation of discrepancies between measured and calculated values is discussed.  相似文献   

    19.
    The paper briefly describes the purpose and features of the Japanese project ILOM (In-situ Lunar Orientation Measurement) in which it is planned to install the zenith telescope with a CCD lens on one of the poles of the Moon for the observation of stars in order to determine the physical libration of the Moon (PhLM). The studies presented in this paper are the result of the first stage of the theoretical support of the project:
    1. The compilation of the list of stars within the field of view of the telescope during the precessional motion of the lunar pole.
    2. Modeling and analysis of the behavior of stellar tracks during the observation period.
    3. Simulation and testing of the sensitivity of the measured selenographic star coordinates to changes in the parameters of the dynamic model of the Moon and the elastic parameters of the lunar body.
    Direct and inverse PhLM problems are discussed. Within the scope of the direct problem visible “daily parallels” and one-year star tracks are calculated. Their behavioral features when observed from the lunar surface are shown. At this stage of the simulation selenographic star coordinates for the four models of the gravitational field of the Moon have been compared, i.e., the model constructed on the basis of the lunar laser ranging (LLR), GLGM-2, LP150Q, and SGM100h. It is shown that even when comparing modern models LP150Q and SGM100h stellar tracks differ from the arc by more than 10 ms of arc. At the stage of the inverse problem, the manifestation of viscoelastic properties of the Moon in selenographic coordinates has been studied. In the spectrum of the simulated residual differences harmonics have been identified which can serve as indicators to refine parameters, Love number k 2 and the delay time characterizing the viscous properties of the lunar body.  相似文献   

    20.
    By combining UV negatives with IR positives of the full Moon, it is possible to suppress albedo differences and to enhance color differences between various lunar regions. Areas within the lunar maria exhibit the greatest color variations, and many have sharp boundaries. In contrast, the terrae in general show only feeble color variations, although small terra regions situated near or surrounded by maria sometimes display enhanced redness. The mare color boundaries in some cases coincide with the edges of clear-cut lava flows, the bluer material overlying the redder. One wedge-shaped area of bluer material corresponds with a prominent sinuous rille, the rille source being situated precisely in the point of the wedge. This area has obliterated portions of two ray systems, showing that the bluer material was deposited later than both the surrounding redder material and the ray material. On the other hand, rays from the crater Olbers A cross both colored areas impartially. Other examples of ray obliteration by bluer deposits are found elsewhere. From Apollo and Surveyor analyses, it is found that there is an apparent correlation between degree of blueness and titanium content of the surface materials. The following conclusions may be drawn:
    1. The various maria were deposited over considerable lengths of time; this does not support the fusion-through-impact hypothesis.
    2. The bluer materials, which appear to be those of high Ti content, are the more recent.
    3. The hypothesis that sinuous rilles are lava drainage channels is supported.
    4. The terrae covered by this study are mostly monotonous, suggesting constant composition, but a few anomalously red isolated regions may be of substantially different composition.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号