首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the position of dust trails from comet 8P/Tuttle, in an effort to explain unusual Ursid meteor shower outbursts that were seen when the comet was near aphelion. Comet 8P/Tuttle is a Halley-type comet in a 13.6-year orbit, passing just outside of Earth's orbit. We find that the meteoroids tend to be trapped in the 12:14 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes 6 centuries to decrease the perihelion of the meteoroid orbits enough to intersect Earth's orbit, during which time the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the 6-year lag between the comet's return and Ursid outbursts. The resonances also prevent dispersion along the comet orbit and limit viewing to only one year in each return. We identified past dust trail encounters with dust trails from 1392 (Dec. 1945) and 1378 (Dec. 1986) and predicted another outburst on 2000 December 22 at around 7:29 and 8:35 UT, respectively, from dust trails dating to the 1405 and 1392 returns. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan, and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06±07 UT, December 22, at zenith hourly rate ∼90 per hour, and the Ursid rates were above half peak intensity during 4.2 h. We find that most Ursid orbits do scatter around the anticipated positions, confirming the link with comet 8P/Tuttle and the epoch of ejection. The 1405 and 1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. This work is the strongest evidence yet for the relevance of mean motion resonances in Halley-type comet dust trail evolution.  相似文献   

2.
We have simulated the formation and evolution of comet 1P/Halley’s meteoroid stream by ejecting particles from the nucleus 5000 years ago and propagating them forward to the present. Our aim is to determine the existence and characteristics of associated meteor showers at Mars and Venus and compare them with 1P/Halley’s two known showers at the Earth. We find that one shower should be present at Venus and two at Mars. The number of meteors in those atmospheres would, in general, be less than that at the Earth. The descending node branch of the Halley stream at Mars exhibits a clumpy structure. We identified at least one of these clumps as particles trapped in the 7:1 mean motion resonance with Jupiter, potentially capable of producing meteor ourbursts of ZHR∼1000 roughly once per century.  相似文献   

3.
For both asteroids and meteor streams, and also for comets, resonances play a major role for their orbital evolutions but on different time scales. For asteroids both mean motion resonances and secular resonances not only structure the phase space of regular orbits but are mainly at the origin for the inherent chaos of planet crosser objects.For comets and their chaotic routes temporary trapping into orbital resonances is a well known phenomenon. In addition for slow diffusion through the Kuiper belt resonances are the only candidates for originating a slow chaos.Like for asteroids, resonances with Jupiter play a major role for the orbital evolution of meteor streams. Crossing of separatrix like zones appears to be crucial for the formation of arcs and for the dissolution of streams. In particular the orbital inclination of a meteor stream appears to be a critical parameter for arc formation. Numerical results obtained in an other context show that the competition between the Poynting-Robertson drag and the gravitational interaction of grains near the 2/1 resonance might be very important in the long run for the structure of meteor streams.  相似文献   

4.
Numerical integrations are used to show that the main contribution to the outburst observed in the June Bootid meteor shower in 1998 was a subset of meteoroids released from the parent comet, 7P/Pons–Winnecke, at its 1825 return. A substantial part of the June Bootid stream is in 2:1 resonance with Jupiter. This inhibits chaotic motion, allowing structures in the stream to remain compact enough over centuries that meteor outbursts can still be produced. Circumstances of ejection in 1825 are calculated that exactly result in orbits capable of producing meteors at the observed time in 1998. Required ejection velocities are  10–20 m s-1  .  相似文献   

5.
Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, we evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay-derived meteoroids will have a low, 16 km s−1, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. We have conducted a D -criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again we find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected from the comet, at each perihelion epoch since 1886, indicate that Jovian perturbations effectively 'drive' the meteoroids to orbits with nodal points beyond the Earth's orbit. The numerical calculations indicate that, even if Comet 15P/Finlay had been a copious emitter of meteoroids during the past 100 years, virtually none of them would have evolved into orbits capable of being sampled by the Earth. There are good observational data, however, to suggest that Comet 15P/Finlay is becoming a transitional comet–asteroid object, and that it has probably not been an efficient producer of meteoroids during the past several hundreds of years.  相似文献   

6.
The dynamical evolution of meteoroid streams associated with cornets Encke, Halley, Machholz 1986 VIII and asteroid Phaethon is discussed. It is shown that the planetary perturbations can greatly increase the streams thickness and each stream may produce several couples of meteor showers active in different seasons of the year. The theoretical and observed data are in a satisfactory accordance.  相似文献   

7.
Observational evidence is sought that the long-term (104 yr) action of a mean motion resonance with Jupiter can produce structure in a meteoroid stream, concentrating meteoroids in a dense swarm. More specifically, predictions tabulated by Asher & Clube of enhanced meteor and fireball activity from a Taurid Complex swarm in the 7:2 resonance are compared with observational data collected in Japan over several decades. The swarm model was proposed for reasons independent of the observations analysed here, and these newly considered data are shown to be consistent with it. This allows increased confidence in the Taurid swarm theory, and more generally could mean that resonant trapping is a dynamical mechanism affecting a significant amount of meteoroidal material in the inner Solar system.  相似文献   

8.
The Quadrantid meteor shower is one of the major showers that produces reliable displays every January. However, it is unique amongst the major showers in still not having its parent uniquely identified. One of the reasons for this may be because the stream, and presumably the parent, lies in a region of the Solar system where near-resonant motion with Jupiter, coupled with potential close encounters, is possible. Such a combination can lead to a rapid dynamical evolution of an orbit. In particular, it may be possible that the orbit of the parent both satisfies the condition for a close encounter and is in resonant motion, while most of the meteoroids cannot satisfy both conditions. This results in the parent evolving away from the bulk of the stream.
To date, two suggestions have been made regarding possible parents for the Quadrantid stream, these being Comet 1491 I and Comet 96P/Machholz. The argument in favour of the first named being the parent is because of the general similarity between the orbits around 1491. The argument for comet 96P/Machholz being the parent is based on the similarity in orbital evolution coupled with a similarity in orbits phase-shifted by 2000 yr. In this paper we suggest that on both counts asteroid 5496 (1973 NA) is more similar to the Quadrantids, and that even if 5496 is not the actual parent in the strict sense that meteoroids are currently being ejected, it is either likely to be a fragment of the parent or the dormant remains of the parent.  相似文献   

9.
One minute counts obtained during the meteor outburst of α-Monocerotids on November 22, 1995, are analyzed in order to examine the possibility of filamentary structure in the stream profile. None is found. It is argued that far-comet type outbursts are due to the Earth's passage through the dust trail of a long period comet, thus offering a direct means of studying such comet dust trails. Hence, the meteor stream activity curve is the first accurate cross section of dust densities through a comet dust trail.  相似文献   

10.
It is known since the seminal study of Laskar (1989) that the inner planetary system is chaotic with respect to its orbits and even escapes are not impossible, although in time scales of billions of years. The aim of this investigation is to locate the orbits of Venus and Earth in phase space, respectively, to see how close their orbits are to chaotic motion which would lead to unstable orbits for the inner planets on much shorter time scales. Therefore, we did numerical experiments in different dynamical models with different initial conditions—on one hand the couple Venus–Earth was set close to different mean motion resonances (MMR), and on the other hand Venus’ orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i = 40°). The couple Venus–Earth is almost exactly in the 13:8 mean motion resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8 resonance are within a small shift in the Earth’s semimajor axis (only 1.5 percent). Especially Mercury is strongly affected by relatively small changes in initial eccentricity and/or inclination of Venus, and even escapes for the innermost planet are possible which may happen quite rapidly.  相似文献   

11.
Arecibo radar imagery of Comet 8P/Tuttle reveals a 10-km-long nucleus with a highly bifurcated shape consistent with a contact binary. A separate echo component was also detected from large (>cm-size), slow-moving grains of the type expected to contribute to the Ursid meteor stream.  相似文献   

12.
The thermal evolution of the Geminid meteor stream and the Phaethon–Geminid stream Complex (PGC) are summarized. Sodium contents of Geminid meteor streams are altered thermally, perhaps during orbital motion in interplanetary space due to the short perihelion distance of the orbit (q ~ 0.14 AU). However, the temperature of meteoroids is less than the sublimation temperature of Na in alkali silicates, suggesting that the parent body 3200 Phaethon itself might have suffered from the thermal processing. On the other hand, a breakup event on PGC parent is suggested by the existence of dynamically associated asteroids (Phaethon, 2005 UD and 1999 YC) sharing pristine features (C, B types). A possible mechanism behind the breakup is the sublimation of ice inside the PGC parent due to its thermal evolution. It is tempting to guess that the PGC parent might be evolved dynamically from the outer part of the main asteroid belt where the residence of ice-rich asteroids (main belt comets) into current PGC-like orbit.  相似文献   

13.
In the context of dust samples collections in space, the COMET experiment (Collecte en Orbite de Matière ExtraTerrestre) was proposed for the first time in 1982. The idea of such an experiment was to collect grains with identified cometary parent body, instead of mixing all extraterrestrial contributions present in low Earth orbit. It was thus proposed to install collectors inside hermetic boxes, to have these boxes mounted outside a space station, orbiting the Earth and to have the capability of choosing the time and duration of the collection. Since 1985, the COMET experiment has been exposed three times to space (COMET-1, in October 1985 during the encounter of the Earth with the Draconid meteor stream; the EUROMIR-95 instrument, exposing collectors, during the crossing by the Earth of the Orionid meteor stream associated to comet P/Halley and, in November 1998, during the crossing by the Earth of the Leonid meteor stream associated to comet Temple-Tuttle, COMET-99). Specific collection techniques, and corresponding analytical procedures have been developed. The collected particles are the only ones accessible in the laboratory with a known cometary origin, before the return to Earth (2006) of the Stardust mission, which will collect cometary grains in the tails of comet Wild 2. Such a challenge justifies the tremendous efforts brought into play, and that are summarized here.  相似文献   

14.
The spatial structure of meteor streams, and the activity profiles of their corresponding meteor showers, depend firstly on the distribution of meteoroid orbits soon after ejection from the parent comet nucleus, and secondly on the subsequent dynamical evolution. The latter increases in importance as more time elapses. For younger structures within streams, notably the dust trails that cause sharp meteor outbursts, it is the cometary ejection model (meteoroid production rate as a function of time through the several months of the comet’s perihelion return, and velocity distribution of the meteoroids released) that primarily determines the shape and width of the trail structure. This paper describes how a trail cross section can be calculated once an ejection model has been assumed. Such calculations, if made for a range of ejection model parameters and compared with observed parameters of storms and outbursts, can be used to constrain quantitatively the process of meteoroid ejection from the nucleus, including the mass distribution of ejected meteoroids.  相似文献   

15.
Based on the number of planet-approaching cometary orbits at Mars and Venus relative to the Earth, there should be ample opportunities for observing meteor activity at those two planets. The ratio of planet-approaching Jupiter family comets (JFCs) at Mars, Earth, and Venus is 4:2:1 indicating that JFC-related outbursts would be more frequent at Mars than the Earth. The relative numbers of planet-approaching Halley-type comets (HTCs) implies that the respective levels of annual meteor activity at those three planets are similar. We identify several instances where near-comet outbursts (Jenniskens, P.: 1995, Astron. Astrophys. 295, 206–235) may occur. A possible double outburst of this type at Venus related to 45P/Honda-Mrkos-Padjusakova may be observable by the ESA Venus Express spacecraft in the summer of 2006. Similarly, the Japanese Planet-C Venus orbiter may observe an outburst related to 27P/Crommelin’s perihelion passage in July 2011. Several additional opportunities exist to observe such outbursts at Mars from 2019 to 2026 associated with comets 38P/Stephan-Oterma, 13P/Olbers and 114P/Wiseman-Skiff.  相似文献   

16.
Short exposure plates of Comet Arend-Roland (1956h) are examined and compared with similar photographs of Comet Bennett (1969i), Comet Halley (1910 II) and Comet Mrkos (1957d). It is found that the emission structure of the dust near the nucleus in the first comet is different from that in the others, although in all cases we have the formation of parabolic envelopes. Close resemblances with configurations described by Wurm and Mammano (1972) have been found for Comet Halley and Comet Mrkos.  相似文献   

17.
吴光节 《天文学进展》2001,19(4):457-469
对近20年来狮子座流星雨的预报工作,进行了系统的阐述和分析。1998年Tempel-Tuttle彗星的回归,再度带来了狮子座流星雨的观测热,也大大促进了对狮子座流星雨预报工作的研究与验证。有的研究在时间预报准确度方面已显示出其模型的优越性,有的在流星雨的强度方面显示出一定的准确度。指出了两大类不同的方法实际上是在三维空间强调了不同的方面。将不同方法的优势结合起来,可能会使流星雨的预报更加成熟。  相似文献   

18.
Photographs of Comet Bennett 1969i taken in the dust-scattered continuum reveal that the dust particles, leading to the formation of the type II tail, leave the vicinity of the nucleus only within a certain cone with the aperture in the direction to the Sun. Three parabolic envelopes embracing the nucleus are formed by the dust (vertex always about on the radius vector) reaching distances from the nucleus of 30 000, 60 000 and 100 000 km.There exists no relation between the production and motion of this dust and the production and motion of the neutral coma gases. The cone of expulsion of the dust is identical with the cone of expulsion for the ions leading to the formation of the type I tail. Dust- and ion envelopes have, however, different kinematical properties. The cone of expulsion is identical with Bessel's Ausströmungskegel of visible matter observed by him in Comet Halley 1835.Comet Bennett is compared with Comet Halley 1910; they are related in many respects although Comet Halley had a lower dust production than the Comet Bennett.We ascribe to the dust particles of the tail II from the beginning of the expulsion an electrical charge.  相似文献   

19.
A.H. Delsemme 《Icarus》1975,24(1):95-110
In order to prepare a flyby mission to Comet Encke, six different sources of information on the possible chemical composition of the cometary nucleus are compared. These are: the neutral and charged radicals and molecules observed in cometary spectra; the chemical composition of type I carbonaceous chondrites; the meteor spectra; the metallic ions collected in the upper atmosphere and correlated with the meteor shower associated with Comet Encke; and finally the volatile molecules observed in a volatile-rich sample of lunar soil, that were interpreted as a possible cometary impact. Possible molecular abundances for the volatile fraction of Comet Encke are tentatively proposed.  相似文献   

20.
《Icarus》1986,66(1):154-164
A program that computes gas and dust production rates and idealized nongravitational force components has been developed and applied to the case of Comet Halley. We use a modified form of our earlier comet model (F.P. Fanale and J.R. Salvali[(1984) Icarus 60, 476–511] to which coma effects and a section on nongravitational forces have been added. The possibility of grain cohesion is also included. These models are used together with observations from 1910 and semiempirically derived data to investigate the effects of obliquity and thermal conductivity of the near thermal conductivity of the nucleus on gas and dust production. The results indicate that the thermal conductivity of the nucleus is of the order of 105 ergs/cm-s-°K, which implies that the ice near the surface is in the crystalline form. A general method is presented for calculating the radii of cometary nuclei using theoretically derived and semiempirically derived nongravitational force components. This method is used to calculate possible radii for Comet Halley that depend on the model variation chosen. The method used and the results presented herein should have greater significance and value when the observational data from Halley's current perihelion passage become available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号