首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of methylamine (CH3NH2) in the upper troposphere and lower stratosphere of Jupiter is investigated. Translationally hot hydrogen atoms are produced in the photolysis of ammonia, phosphine, and acetylene which react with methane to produce methyl (CH3) radicals; the latter recombine with NH2 to form CH3NH2. Also, methane is catalytically dissociated to CH3 + H by the species C2 and C2H produced in the photolysis of acetylene. It is shown that the combined production of CH3NH2 and subsequent photolysis to HCN is unlikely to account for the HCN observed near Jupiter's tropopause. Recombination of NH2 and C2H5N followed by photolysis to HCN is the preferred path. Production of C2H6 by these two processes is negligible in comparison to the downward flux of C2H6 from the Lyman α photolysis region of CH4. An upper limit column density on CH3PH2 is estimated to be ~1013 cm?2 as compared to 1015 cm?2 for CH3NH2. Hot H atoms account for a negligible fraction of the total ortho-para conversion by the reaction H + H2  相似文献   

2.
Dirty ice of a second kind (major components, H2O, CO, and N2; minor components less than several percents, NH3, CH4, and other organic substances such as HCN, CH3CN etc.) is assumed for the composition of volatiles in the cometary nucleus. The consistency with the observations of molecular ions and daughter molecules in the cometary atmosphere is argued by taking into account various ion-molecular reactions and dissociative recombinations. There is a satisfactory agreement for the second kind of dirty-ice model, but the presence of large amounts of CH4 and NH3 is found to be rather in contradiction with observational evidence. A velocity of 8 km s?1 for the hydrogen atoms, derived from analysis of the hydrogen Lyman-alpha corona around comets, is found from the dissociative recombination of H3O+, the dominant constituent of cometary ionosphere, in accordance with H3O++e ?→OH+H+H.  相似文献   

3.
J.P. Ferris  J.Y. Morimoto 《Icarus》1981,48(1):118-126
Photolysis of NH3 in the presence of CH4 with a 185-nm light source results in the generation of hot hydrogen atoms that abstract hydrogen from the CH4 to produce CH3·. Subsequent reactions of CH3· and NH2· give hydrocarbons, CH3NH2, and HCN. The extent of reaction of CH4 was measured by the ratio of the moles of CH4 reacted per mole of NH3 decomposed (ΔCH4ΔNH3). This ratio increases with diminishing NH3 pressure at constant CH4 pressure but it remains constant if CH4NH3?3. The ΔCH4ΔNH3 ratio is independent of temperature in the range 156–298° K, suggesting that hot hydrogen atoms were responsible for the reaction of CH4. This postulate was confirmed by the observation that this reaction was quenched when H2 or SF6 was added to the reaction mixture.  相似文献   

4.
S. Kumar  D.M. Hunten  J.B. Pollack 《Icarus》1983,55(3):369-389
Nonthermal escape processes responsible for the escape of hydrogen and deuterium from Venus are examined for present and past atmospheres. Three mechanisms are important for the escape of hydrogen from the present atmosphere: (a) charge exchange of plasmaspheric H+ with exospheric H, (b) impact of exospheric hot O atoms on H, and (c) ion molecule reactions involving O+ and H2. However, in the past when the H abundance was higher, the charge-exchange mechanism would be the strongest. The H escape flux increases rapidly with increasing hydrogen abundance in the upper atmosphere and saturates at a value of 1 × 1010 cm?2 sec?1 emerging primarily from the day side when the H mixing ratio at the homopause is 2 × 10?3. This corresponds to an H2O mixing ratio of 1 × 10?3 at the cold trap and ~15% at the surface. Deuterium would also escape by the charge-exchange mechanism and a D/H enrichment by a factor of ~1000 over the nonthermal escape regime is expected, which could have lasted over the last 3 billion years. Coincidentally, the onset of hydrodynamic flow leading to efficient H escape occurs just at the H2O mixing ratio at which the charge-exchange escape flux saturates. Thus it is possible that Venus has lost an Earth-equivalent ocean of water over geologic time. If so, either the D/H enrichment has been kept low by modest outgassing of juvenile water or Venus started out with a D/H ratio of ~4.0 × 10?6.  相似文献   

5.
We calculate the D/H ratio of CH4 from serpentinization on Titan to determine whether Titan’s atmospheric CH4 was originally produced inside the giant satellite. This is done by performing equilibrium isotopic fractionation calculations in the CH4-H2O-H2 system, with the assumption that the bulk D/H ratio of the system is equivalent to that of the H2O in the plume of Enceladus. These calculations show that the D/H ratio of hydrothermally produced CH4 would be markedly higher than that of atmospheric CH4 on Titan. The implication is that Titan’s CH4 is a primordial chemical species that was accreted by the moon during its formation. There are two evolutionary scenarios that are consistent with the apparent absence of endogenic CH4 in Titan’s atmosphere. The first is that hydrothermal systems capable of making CH4 never existed on Titan because Titan’s interior has always been too cold. The second is that hydrothermal systems on Titan were sufficiently oxidized so that C existed in them predominately in the form of CO2. The latter scenario naturally predicts the formation of endogenic N2, providing a new hypothesis for the origin of Titan’s atmospheric N2: the hydrothermal oxidation of 15N-enriched NH3. A primordial origin for CH4 and an endogenic origin for N2 are self-consistent, but both hypotheses need to be tested further by acquiring isotopic data, especially the D/H ratio of CH4 in comets, and the 15N/14N ratio of NH3 in comets and that of N2 in one of Enceladus’ plumes.  相似文献   

6.
The early evolution of Titan's atmosphere is expected to produce enrichment in the heavy isotopomers of CO, 13CO and C18O, relative to 12C16O. However, the original isotopic signatures may be altered by photochemical reactions. This paper explains why there is no isotopic enrichment in C in Titan's atmosphere, despite significant enrichment of heavy H, N, and O isotopes. We show that there is a rapid exchange of C atoms between the CH4 and CO reservoirs, mediated by the reaction 1CH2+*CO→1*CH2+CO, where *C is 13C. Based on recent laboratory measurements, we estimate the rate coefficient for this reaction to be 3.2×10−12 cm3 s−1 at the temperature appropriate for the upper atmosphere of Titan. We investigate the isotopic dilution of CO using the Caltech/JPL one-dimensional photochemical model of Titan. Our model suggests that the time constant for isotopic exchange through the above reaction is about 800 Myr, which is significantly shorter than the age of Titan, and therefore any original isotopic enhancement of 13C in CO may have been diluted by the exchange process. In addition, a plausible model for the evolution history of CO on Titan after the initial escape is proposed.  相似文献   

7.
In order to understand the cometary plasma environment it is important to track the closely linked chemical reactions that dominate ion evolution. We used a coupled MHD ion-chemistry model to analyze previously unpublished Giotto High Intensity Ion Mass Spectrometer (HIS-IMS) data. In this way we study the major species, but we also try to match some minor species like the CHx and the NHx groups. Crucial for this match is the model used for the electrons since they are important for ion-electron recombination. To further improve our results we included an enhanced density of supersonic electrons in the ion pile-up region which increases the local electron impact ionization. In this paper we discuss the results for the following important ions: C+, CH+, CH+2, CH+3, N+, NH+, NH+2, NH+3, NH+4, O+, OH+, H2O+, H3O+, CO+, HCO+, H3CO+, and CH3OH+2. We also address the inner shock which is very distinctive in our MHD model as well as in the IMS data. It is located just inside the contact surface at approximately 4550 km. Comparisons of the ion bulk flow directions and velocities from our MHD model with the data measured by the HIS-IMS give indication for a solar wind magnetic field direction different from the standard Parker angle at Halley's position. Our ion-chemical network model results are in a good agreement with the experimental data. In order to achieve the presented results we included an additional short lived inner source for the C+, CH+, and CH+2 ions. Furthermore we performed our simulations with two different production rates to better match the measurements which is an indication for a change and/or an asymmetric pattern (e.g. jets) in the production rate during Giotto's fly-by at Halley's comet.  相似文献   

8.
We have investigated the H and Cl systematics in apatite from four brecciated lunar meteorites. In Northwest Africa (NWA) 4472, most of the apatites contain ~2000–6000 ppm H2O with δD between ?200 and 0‰, except for one grain isolated in the matrix, which contains ~6000 ppm H2O with δD of ~500–900‰. This low‐δD apatite contains ~2500–7500 ppm Cl associated with δ37Cl of ~15–20‰, while the high‐δD grain contains ~2500 ppm Cl with δ37Cl of ~7–15‰. In NWA 773, apatites in a first group contain ~700–2500 ppm H2O with δD values averaging around ~0 ± 100‰, while apatites in a second group contain ~5500–16500 ppm H2O with δD ~250 ± 50‰. In Sayh al Uhaymir (SaU) 169 and Kalahari (Kal) 009, apatites are similar in terms of their H2O contents (~600–3000 ppm) and δD values (?100 to 200‰). In SaU 169, apatites contain ~6000–10,000 ppm Cl, characterized by δ37Cl of ~5–12‰. Overall, most of the analyzed apatite grains have δD within the range reported for carbonaceous chondrites, similar to apatite analyzed in ancient (>3.9 Ga) lunar magmatic. One grain in NWA 4472 has H and Cl isotope compositions similar to apatite from mare basalts. With an age of 4.35 Ga, this grain could be a representative of the oldest known lunar volcanic activity. Finally, since numerous evolved clasts in NWA 773 formed through silicate liquid immiscibility, the apatite grains with extremely high H2O contents, reaching pure hydroxylapatite composition, could provide insights into the effects of such process on the evolution of volatiles in lunar magmas.  相似文献   

9.
《Icarus》1987,72(2):381-393
Bombardment of Titan by Uranus-Neptune planetesimals and/or fragments of a disrupted Hyperion progenitor supplied more than enough energy to drive vigorous atmospheric shock chemistry. Chemical equilibrium modeling of the shock products in simulated atmospheres indicates that impact energy has produced large amounts of N2 and organic compounds over Titan's history. The mole fraction of organic compounds in the shocked gas mixture (T = 1200−2500°K, P = 10−1−103bar) reaches a maximum of approximately 3% in a current Titan mixture and 12% in a primordial CH4, NH3-rich mixture. Atmospheric water mixing ratio controls the organic yield in shock reactions, but its limiting effect may have been reduced by cold-trapping of water in a cooling atmosphere. Kinetic inhibition of graphite formation in the shocked gas enhanced the yield of radicals and organic. The resulting mixture of carbonaceous soot and condensed hydrocarbons subsequently settled onto the surface; the depth of the generated layer was on the order of hundreds of meters. Impact shock energy was capable of converting massive amounts of NH3 to N2 early in Titan history—over twice the present atmospheric and 1.5 times the total ocean-atmospheric inventory of N2. Shock conversion of NH3 into N2 bypasses the difficulties of other schemes of N2 production and may have been of singular importance in Titan's atmospheric evolution.  相似文献   

10.
Spectral observations of Saturn from the far infrared spectrometer aboard the Cassini spacecraft [Flasar, F.M., et al., 2005. Temperatures, winds, and composition in the Saturnian system. Science 307, 1247-1251] have revealed that the C/H ratio in the planet is in fact about twice higher than previously derived from ground based observations and in agreement with the C/H value derived from Voyager IRIS by Courtin et al. [1984. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. Astrophys. J. 287, 899-916]. The implications of this measurement are reanalyzed in the present report on the basis that volatiles observed in cometary atmospheres, namely CO2, CH4, NH3 and H2S may have been trapped as solids in the feeding zone of the planet. CH4 and H2S may have been in the form of clathrate hydrates while CO2 presumably condensed in the cooling solar nebula. Carbon may also have been incorporated in organics. Conditions of temperature and pressure ease the hydratation of NH3. Such icy grains were included in planetesimals which subsequently collapsed into the hydrogen envelope of the planet, then resulting in C, N and S enrichments with respect to the solar abundance. Our calculations are consistent, within error bars, with observed elemental abundances on Saturn provided that the carbon trapped in planetesimals was mainly in the form of CH4 clathrate and CO2 ice (and maybe as organics) while nitrogen was in the form of NH3 hydrate. Our approach has implications on the possible pattern of noble gases in Saturn, since we predict that contrary to what is observed in Jupiter, Ar and Kr should be in solar abundance while Xe might be strongly oversolar. The only way to verify this scenario is to send a probe making in situ mass spectrometer measurements. Our scenario also predicts that the 14N/15N ratio should be somewhat smaller in Saturn than measured in Jupiter by Galileo.  相似文献   

11.
Sang J. Kim  John Caldwell 《Icarus》1982,52(3):473-482
The 8.6-μm emission feature of Titan's infrared spectrum was analyzed using the Voyager temperature-pressure profile. Although both C3H8 and CH3D have bands at that wavelength, we show that CH3D dominates the observed emission on Titan. We derived a CH3D/CH4 mixing ratio using this band and the strong CH4 band at 7.7 μm. The corresponding D/H ratio is 4.2?1.5+2 × 10?4, neglecting deuterium fractionation with other molecules. The main uncertainty in this value comes from the continuum emission characteristics. The D/H ratio is apparently significantly enhanced on Titan with respect to published values for Saturn.  相似文献   

12.
The abundances of PH3, CH3D, and GeH4 are derived from the 2100- to 2250-cm?1 region of the Voyager 1 IRIS spectra. No evidence is seen for large-scale variations of the phosphine abundance over Jovian latitudes between ?30 and +30°. In the atmospheric regions corresponding to 170–200°K, the derived PH3/H2 value is (4.5 ± 1.5) × 10?7 or 0.75 ± 0.25 times the solar value. This result, compared with other PH3 determinations at 10 μm, suggests than the PH3/H2 ratio on Jupiter decreases with atmospheric pressure. In the 200–250°K region, we derive, within a factor of 2, CH3D/H2 and GeH4/H2 ratios of 2.0 × 10?7 and 1.0 × 10?9, respectively. Assuming a C/H value of 1.0 × 10?3, as derived from Voyager, our CH3D/H2 ratio implies a D/H ratio of 1.8 × 10?5, in reasonable agreement with the interstellar medium value.  相似文献   

13.
We have studied the possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2CH4H2 Titan model atmosphere. The cosmic-ray-induced ionization results in peak electron densities of 2 × 103 cm?3, with NH4+, C3H9+, and C4H9+ being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.  相似文献   

14.
We propose a new interpretation of the D/H ratio in CH4 observed in the atmosphere of Titan. Using a turbulent evolutionary model of the subnebula of Saturn (O. Mousis et al. 2002, Icarus156, 162-175), we show that in contrast to the current scenario, the deuterium enrichment with respect to the solar value observed in Titan cannot have occurred in the subnebula. Instead, we argue that values of the D/H ratio measured in Titan were obtained in the cooling solar nebula by isotopic thermal exchange of hydrogen with CH3D originating from interstellar methane D-enriched ices that vaporized in the nebula. The rate of the isotopic exchange decreased with temperature and became fully inhibited around 200 K. Methane was subsequently trapped in crystalline ices around 10 AU in the form of clathrate hydrates formed at 60 K, and incorporated into planetesimals that formed the core of Titan. The nitrogen-methane atmosphere was subsequently outgassed from the decomposition of the hydrates (Mousis et al. 2002). By use of a turbulent evolutionary model of the solar nebula (O. Mousis et al. 2000, Icarus148, 513-525), we have reconstructed the entire story of D/H in CH4, from its high value in the early solar nebula (acquired in the presolar cloud) down to the value measured in Titan's atmosphere today. Considering the two last determinations of the D/H ratio in Titan—D/H=(7.75±2.25)×10−5 obtained from ground-based observations (Orton 1992, In: Symposium on Titan, ESA SP-338, pp. 81-85), and D/H=(8.75+3.25−2.25)×10−5, obtained from ISO observations (Coustenis et al. 2002, submitted for publication)—we inferred an upper limit of the D/H ratio in methane in the early outer solar nebula of about 3×10−4. Our approach is consistent with the scenario advocated by several authors in which the atmospheric methane of Titan is continuously replenished from a reservoir of clathrate hydrates of CH4 at high pressures, located in the interior of Titan. If this scenario is correct, observations of the satellite to be performed by the radar, the imaging system, and other remote sensing instruments aboard the spacecraft of the Cassini-Huygens mission from 2004 to 2008 should reveal local disruptions of the surface and other signatures of the predicted outgassing.  相似文献   

15.
《Planetary and Space Science》1999,47(10-11):1225-1242
Infrared spectra of Jupiter and Saturn have been recorded with the two spectrometers of the Infrared Space Observatory (ISO) in 1995–1998, in the 2.3–180 μm range. Both the grating modes (R=150–2000) and the Fabry-Pérot modes (R=8000–30,000) of the two instruments were used. The main results of these observations are (1) the detection of water vapour in the deep troposphere of Saturn; (2) the detection of new hydrocarbons (CH3C2H, C4H2, C6H6, CH3) in Saturn’s stratosphere; (3) the detection of water vapour and carbon dioxide in the stratospheres of Jupiter and Saturn; (4) a new determination of the D/H ratio from the detection of HD rotational lines. The origin of the external oxygen source on Jupiter and Saturn (also found in the other giant planets and Titan in comparable amounts) may be either interplanetary (micrometeoritic flux) or local (rings and/or satellites). The D/H determination in Jupiter, comparable to Saturn’s result, is in agreement with the recent measurement by the Galileo probe (Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiters atmosphere. Space Science Rev. 84 251–263); the D/H values on Uranus and Neptune are significantly higher, as expected from current models of planetary formation.  相似文献   

16.
The contribution of exothermic ion and neutral chemistry to Titan's corona is studied. The production rates for fast neutrals N2, CH4, H, H2, 3CH2, CH3, C2H4, C2H5, C2H6, N(4S), NH, and HCN are determined using a coupled ion and neutral model of Titan's upper atmosphere. After production, the formation of the suprathermal particles is modeled using a two-stream simulation, as they travel simultaneously through a thermal mixture of N2, CH4, and H2. The resulting suprathermal fluxes, hot density profiles, and energy distributions are compared to the N2 and CH4 INMS exospheric data presented in [De La Haye, V., Waite Jr., J.H., Johnson, R.E., Yelle, R.V., Cravens, T.E., Luhmann, J.G., Kasprzak, W.T., Gell, D.A., Magee, B., Leblanc, F., Michael, M., Jurac, S., Robertson, I.P., 2007. J. Geophys. Res., doi:10.1029/2006JA012222, in press], and are found insufficient for producing the suprathermal populations measured. Global losses of nitrogen atoms and carbon atoms in all forms due to exothermic chemistry are estimated to be and .  相似文献   

17.
Detections and upper limits to the continuum emission (1 ≤ λ ≤6 cm) and spectral line emission (OH, CO, CS, HCN, HCO+, CN, CH3CN, CH3C2H, NH3, H2O, HC3N, CH3CH2CN) are reported from radio observations of Comets 1983d and 1983e. Comparison is made with observations of CN at optical wavelengths. These results may be useful in planning future cometary observations.  相似文献   

18.
M.H. Moore  R.L. Hudson 《Icarus》2003,161(2):486-500
Infrared spectra and radiation chemical behavior of N2-dominated ices relevant to the surfaces of Triton and Pluto are presented. This is the first systematic IR study of proton-irradiated N2-rich ices containing CH4 and CO. Experiments at 12 K show that HCN, HNC, and diazomethane (CH2N2) form in the solid phase, along with several radicals. NH3 is also identified in irradiated N2 + CH4 and N2 + CH4 + CO. We show that HCN and HNC are made in irradiated binary ice mixtures having initial N2/CH4 ratios from 100 to 4, and in three-component mixtures have an initial N2/(CH4 + CO) ratio of 50. HCN and HNC are not detected in N2-dominated ices when CH4 is replaced with C2H6, C2H2, or CH3OH.The intrinsic band strengths of HCN and HNC are measured and used to calculate G(HCN) and G(HNC) in irradiated N2 + CH4 and N2 + CH4 + CO ices. In addition, the HNC/HCN ratio is calculated to be ∼1 in both icy mixtures. These radiolysis results reveal, for the first time, solid-phase synthesis of both HCN and HNC in N2-rich ices containing CH4.We examine the evolution of spectral features due to acid-base reactions (acids such as HCN, HNC, and HNCO and a base, NH3) triggered by warming irradiated ices from 12 K to 30-35 K. We identify anions (OCN, CN, and N3−) in ices warmed to 35 K. These ions are expected to form and survive on the surfaces of Triton and Pluto. Our results have astrobiological implications since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are involved in the syntheses of biomolecules such as amino acids and polypeptides.  相似文献   

19.
The paper is concerned with the study of the star-forming regions S231–S235 in radio lines of molecules of the interstellar medium—carbon monoxide (CO), ammonia (NH3), cyanoacetylene (HC3N), in maser lines—methanol (CH3OH) and water vapor (H2O). The regions S231–S235 belong to the giant molecular cloudG174+2.5. The goal of this paper is to search for new sources of emission toward molecular clumps and to estimate their physical parameters from CO and NH3 molecular lines. We obtained new detections ofNH3 andHC3Nlines in the sources WB89673 and WB89 668 which indicates the presence of high-density gas. From the CO line, we derived sizes, column densities, and masses of molecular clumps. From the NH3 line, we derived gas kinetic temperatures and number densities in molecular clumps. We determined that kinetic temperatures and number densities of molecular gas are within the limits 16–30 K and 2.8–7.2 × 103 cm?3 respectively. The shock-tracing line of CH3OH molecule at a frequency of 36.2 GHz was detected in WB89 673 for the first time.  相似文献   

20.
T. Encrenaz  M. Combes 《Icarus》1982,52(1):54-61
Using a method defined in a previous paper [M. Combes and T. Encrenaz, Icarus39 1–27 (1979)], we reestimated the C/H ratio in the atmospheres of Jupiter and Saturn by the measurements of the weak visible CH4 bands, the CH43 band, and the (3-0) and (4-0) quadrupole bands of H2. In the case of Jupiter we conclude that the C/H ratio is enriched by a factor ranging from 1.7 to 3.6 relative to the solar value. In the case of Saturn, our derived C/H value ranges from 1.2 to 3.2 times the solar value. The Jovian D/H ratio derived from this study is 1.2 × 10?5 < D/H < 3.1 × 10?5. The value derived for the D/H ratio on Saturn is not precise enough to be conclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号