首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Baszkówka is an equilibrated, apparently low‐shock, unusually porous chondrite. Some earlier studies were undertaken to understand whether the porosity in Baszkówka, and similar porous chondrites, is a relic of a primordial feature or rather the effect of atypical reprocessing on the parent body. Neither of the studies reconstructed the accurate thermal and deformational evolution of chondrites, however, while it is known that shock‐induced compaction is the main means to affect chondritic porosity. Here we use a combination of 3‐D and 2‐D petrographic examination to understand how the evolution of pores correlates with thermal and shock history recorded in the Baszkówka chondrite. The grain framework silicates in Baszkówka contain healed shock fractures—a clear recorder of significant shock process and postshock annealing. Simultaneously, metal grains do not exhibit any preferred orientation or fabric, which would be expected to develop in response to the deformation as recorded by silicates. We interpret this as evidence for re‐agglomeration and annealing of shocked material. Pore spaces in Baszkówka are connected and decorated by fine‐grained plagioclase‐dominated mass and bulky euhedral olivine crystals, which exhibit growth steps on crystal surfaces. The euhedral olivine must have formed owing to the condensation of a vapor, while plagioclase most likely crystallized from melted chondritic matrix. During the shock event, fine‐grained matrix in Baszkówka was melted and vaporized. Vapor expansion added to ballistic velocity led to ejection and opening of the pore spaces. After re‐agglomeration in a hot ejecta blanket the rock was annealed, melted material circulated in created pore spaces and vapor condensed.  相似文献   

2.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

3.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

4.
Abstract— 40Ar‐39Ar data are presented for the unbrecciated lunar basaltic meteorites Asuka (A‐) 881757, Yamato (Y‐) 793169, Miller Range (MIL) 05035, LaPaz Icefield (LAP) 02205, Northwest Africa (NWA) 479 (paired with NWA 032), and basaltic fragmental breccia Elephant Moraine (EET) 96008. Stepped heating 40Ar‐39Ar analyses of several bulk fragments of related meteorites A‐881757, Y‐793169 and MIL 05035 give crystallization ages of 3.763 ± 0.046 Ga, 3.811 ± 0.098 Ga and 3.845 ± 0.014 Ga, which are comparable with previous age determinations by Sm‐Nd, U‐Pb Th‐Pb, Pb‐Pb, and Rb‐Sr methods. These three meteorites differ in the degree of secondary 40Ar loss with Y‐793169 showing relatively high Ar loss probably during an impact event ?200 Ma ago, lower Ar loss in MIL 05035 and no loss in A‐881757. Bulk and impact melt glass‐bearing samples of LAP 02205 gave similar ages (2.985 ± 0.016 Ga and 2.874 ± 0.056 Ga) and are consistent with ages previously determined using other isotope pairs. The basaltic portion of EET 96008 gives an age of 2.650 ± 0.086 Ga which is considered to be the crystallization age of the basalt in this meteorite. The Ar release for fragmental basaltic breccia EET 96008 shows evidence of an impact event at 631 ± 20 Ma. The crystallization age of 2.721 ± 0.040 Ga determined for NWA 479 is indistinguishable from the weighted mean age obtained from three samples of NWA 032 supporting the proposal that these meteorites are paired. The similarity of 40Ar‐39Ar ages with ages determined by other isotopic systems for multiple meteorites suggests that the K‐Ar isotopic system is robust for meteorites that have experienced a significant shock event and not a prolonged heating regime.  相似文献   

5.
Abstract– Miller Range (MIL) 05029 is a slowly cooled melt rock with metal/sulfide depletion and an Ar‐Ar age of 4517 ± 11 Ma. Oxygen isotopes and mineral composition indicate that it is an L chondrite impact melt, and a well‐equilibrated igneous rock texture with a lack of clasts favors a melt pool over a melt dike as its probable depositional setting. A metallographic cooling rate of approximately 14 °C Ma?1 indicates that the impact occurred at least approximately 20 Ma before the Ar‐Ar closure age of 4517 Ma, possibly even shortly after accretion of its parent body. A metal grain with a Widmanstätten‐like pattern further substantiates slow cooling. The formation age of MIL 05029 is at least as old as the Ar‐Ar age of unshocked L and H chondrites, indicating that endogenous metamorphism on the parent asteroid was still ongoing at the time of impact. Its metallographic cooling rate of approximately 14 °C Ma?1 is similar to that typical for L6 chondrites, suggesting a collisional event on the L chondrite asteroid that produced impact melt at a minimum depth of 5–12 km. The inferred minimum crater diameter of 25–60 km may have shattered the 100–200 km diameter L chondrite asteroid. Therefore, MIL 05029 could record the timing and petrogenetic setting for the observed lack of correlation of cooling rates with metamorphic grades in many L chondrites.  相似文献   

6.
Abstract— We review the petrology of Baszkówka, present new microprobe data on mineral constituents, and propose a model for surface properties of the parent body consistent with these data. The low shock index and high porosity of the Baszkówka L5 chondrite mean that considerable primary textural and petrographic detail is preserved, allowing insight into the structure and evolution of the parent body. This meteorite formed in a sedimentary environment resembling that in which pyroclastic rocks are deposited. The origin of the component chondrules, achondritic fragments (mostly olivine and pyroxene aggregates), chondritic‐achondritic aggregates, and compound chondrules can be explained by invoking collision of 2 melted or partially melted planetesimals, each covered with a thin crust. This could have happened at an early stage in the evolution of the solar system, between 1 and 2 Myr after its origin. The collision resulted in the formation of a cloud containing products of earlier magmatic crystallization (chondrite and achondrite fragments) from which new chondrules were created. Particle collision in this cloud produced fragmented chondrules, chondritic‐achondritic aggregates, and compound chondrules. Within this low‐density medium, these particles were accreted on the surface of the larger of the planetesimals involved in the collision. The density of the medium was low enough to prevent grain‐size sorting of the components but high enough to prevent the total loss of heat and to enable the welding of fragments on the surface of the body. The rock material was homogenized within the cloud and, in particular, within the zone close to the planetesimal surface. The hot material settled on the surface and became welded as molten or plastic metal, and sulfide components cemented the grains together. The process resembled the formation of welded ignimbrites. Once these processes on the planetesimal surface were completed, no subsequent recrystallization occurred. The high porosity of the Baszkówka chondrite indicates that the meteorite comes from a near‐surface part of the parent body. Deeper parts of the planetesimal would have been more massive because of compaction.  相似文献   

7.
The hornblende‐ and biotite‐bearing R chondrite LAP 04840 is a rare kind of meteorite possibly containing outer solar system water stored during metamorphism or postshock annealing deep within an asteroid. Because little is known regarding its age and origin, we determined 40Ar/39Ar ages on hornblende‐rich separates of the meteorite, and obtained plateau ages of 4340(±40) to 4380(±30) Ma. These well‐defined plateau ages, coupled with evidence for postshock annealing, indicate this meteorite records an ancient shock event and subsequent annealing. The age of 4340–4380 Ma (or 4.34–4.38 Ga) for this and other previously dated R chondrites is much older than most impact events recorded by ordinary chondrites and points to an ancient event or events that predated the late heavy bombardment that is recorded in so many meteorites and lunar samples.  相似文献   

8.
Abstract— This Meteoritical Bulletin lists 53 meteorites, of which 16 are from the Nullarbor, Australia, and 12 from Roosevelt County, New Mexico. Besides ordinary chondrites, there are five irons and one howardite (Mundrabilla 018). Four of the meteorites are falls (Baszkówka, Campos Salos, Neagari, and New Halfa).  相似文献   

9.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

10.
Ar‐Ar isochron ages of EL chondrites suggest closure of the K‐Ar system at 4.49 ± 0.01 Ga for EL5 and 6 chondrites, and 4.45 ± 0.01 Ga for EL3 MAC 88136. The high‐temperature release regimes contain a mixture of radiogenic 40Ar* and trapped primordial argon (solar or Q‐type) with 40Ar/36ArTR ~ 0 , which does not affect the 40Ar budget. The low‐temperature extractions show evidence of an excess 40Ar component. The 40Ar/36Ar is 180–270; it is defined by intercept values of isochron regression. Excess 40Ar is only detectable in petrologic types >4/5. These lost most of their primordial 36Ar from low‐temperature phases during metamorphism and retrapped excess 40Ar. The origin of this excess 40Ar component is probably related to metamorphic Ar mobilization, homogenization of primordial and in situ radiogenic Ar, and trapping of Ar by distinct low‐temperature phases. Ar‐Ar ages of EH chondrites are more variable and show clear evidence of a major impact‐induced partial resetting at about 2.2 Ga ago or alternatively, prolonged metamorphic decomposition of major K carrier phases. EH impact melt LAP 02225 displayed the highest Ar‐Ar isochron age of 4.53 ± 0.01 Ga. This age sets a limit of about 25–45 Ma for the age bias between the K‐Ar and U‐Pb decay systems.  相似文献   

11.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

12.
The Hayabusa mission to asteroid 25143, Itokawa, brought back 2000 small particles, which most closely resemble material found in LL4‐6 chondrites. We report an 40Ar/39Ar age of 1.3 ± 0.3 Ga for a sample of Itokawa consisting of three grains with a total mass of ~2 μg. This age is lower than the >4.0 Ga ages measured for 75% of LL chondrites but close to one for Y‐790964 and its pairs. The flat 40Ar/39Ar release spectrum of the sample suggests complete degassing 1.3 Ga ago. Recent solar heating in Itokawa's current orbit does not appear likely to have reset that age. Solar or impact heating 1.3 Ga ago could have done so. If impact heating was responsible, then the 1.3 Ga age sets an upper bound on the time at which the Itokawa rubble pile was assembled and suggests that rubble pile creation was an ongoing process in the inner solar system for at least the first 3 billion years of solar system history.  相似文献   

13.
Abstract— Most 40Ar‐39Ar ages of L chondrites record an event at approximately 500 Ma, indicating a large collisional impact at that time. However, there is a spread in ages from 400 to 600 Ma in these meteorites that is greater than the analytical uncertainty. Identification of, and correction for, trapped Ar in a few L chondrites has given an age of 470 ± 6 Ma. This age coincides with Ordivician fossil meteorites that fell to Earth at 467 ± 2 Ma. As these fossil meteorites were originally L chondrites, the apparent conclusion is that a large impact sent a flood of L chondrite material to Earth, while material that remained on the L chondrite parent body was strongly heated and reset. We have reduced 40Ar‐39Ar data for Northwest Africa 091 using various techniques that appear in the literature, including identification and subtraction of trapped Ar. These techniques give a range of ages from 455 to 520 Ma, and show the importance of making accurate corrections. By using the most straightforward technique to identify and remove a trapped Ar component (which is neither terrestrial nor primordial), an 40Ar‐39Ar age of 475 ± 6 Ma is found for Northwest Africa 091, showing a temporal link to fossil meteorites. In addition, high temperature releases of Northwest Africa 091 contain evidence for a second trapped component, and subtraction of this component indicates a possible second collisional impact at approximately 800 Ma. This earlier age coincides with 40Ar‐39Ar ages of some H and L chondrites, and lunar samples.  相似文献   

14.
Hydroxyl defects in nominally anhydrous minerals (NAMs) were potential carriers of water in the early Solar System and might have contributed to the accretion of terrestrial water. To better understand this, we have conducted a nanoscale secondary ion mass spectrometry survey of water contents in olivine and orthopyroxene from a set of equilibrated ordinary chondrites of the L and LL groups (Baszkówka, Bensour, Kheneg Ljouâd, and Tuxtuac) and several ultramafic achondrites (Zakłodzie, Dhofar 125, Northwest Africa [NWA] 4969, NWA 6693, and NWA 7317). For calibration, we used terrestrial olivine and orthopyroxene with H2O contents determined by Fourier transform infrared. Our 99.7% (~3SD) detection limits are 3.6–5.4 ppmw H2O for olivine and 7.7–10.9 ppmw H2O for orthopyroxene. None of the meteoritic samples studied consistently shows water contents above the detection limits. A few exceptions slightly above the detection limits are suspected of terrestrial contamination by ferric oxyhydroxides. If the meteorite samples investigated accreted in the presence of small amounts of water ice, the upper limits of water contents provided by our survey suggest that the retention of hydrogen during thermal metamorphism and differentiation was ineffective. We suggest that loss occurred through combinations of low internal pressures, high permeability along grain boundaries, and speciation of hydrogen into reduced compounds such as H2 and methane, which are less soluble in NAMs than in water.  相似文献   

15.
Abstract— To contribute to the understanding of the impact history of asteroids, we performed a high-resolution 40Ar-39Ar study of ten moderately to highly shocked chondrites, which we selected according to the shock classification given by Stöffler et al. (1991). Two recent shocked chondrite falls and two highly shocked eucrites completed our sample suite. When possible, we separated impact melt from host rock for separate analysis. In total, we studied 28 samples from 14 meteorites. In some cases, atmospheric Ar that we associate with terrestrial weathering was identified and corrected for. The ages we obtained range between ~100 Ma and ~4.1 Ga and are clearly distinct from primordial ages that correspond to solar system formation. We reproduced the previously reported cluster of L-chondrite ages, ~500 Ma. The most prominent result of our study is that, in the case of chondrites, melts generally are older than host rocks or melt-embedded unmolten rocks. To solve this apparent paradox, we propose that the melt-forming event, which was the most severe shock episode in the history of these meteorites, has not been the only occasion affecting their K-Ar systems. At least one later impact metamorphism must have occured. The response of the K-Ar clock to this second event was more severe in the host rock than in the previously (in the first event) generated melt veins and pockets because of different Ar retention rates. Hence, impact metamorphism on meteorite parent bodies indeed was a multistage process extending in time over billions of years.  相似文献   

16.
Abstract— Ibitira is a strongly recrystallized and unbrecciated noncumulate eucrite. We measured Ca compositional profiles of Ibitira pyroxene by electron microprobe and computed the cooling rate and burial depth from pyroxene exsolution profiles to gain information on early thermal history of Ibitira. Pyroxene begins to exsolve at 1082 °C and cools down to 550 °C at a rate of 0.02 °C/year, forming an augite lamella about 7.0 μm in width. A notable characteristic of the Ca profile of augite lamellae in Ibitira pyroxene is a gradient near the interface between augite and low‐Ca pyroxene (pigeonite). This profile suggests that after thermal metamorphism Ibitira pyroxene experienced a sudden temperature rise to above solidus temperature of pyroxene (~1082 °C), and subsequent rapid cooling. The 39Ar‐40Ar age of 4.485 Ga for Ibitira, which is the oldest 39Ar‐40Ar age for noncumulate eucrites, may date this reheating event.  相似文献   

17.
Abstract— Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material enriched in Si, Na, Al, and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New 39Ar‐40Ar ages for silicate from three different Caddo samples are consistent with a common age of 4.50‐4.51 Gyr. Less well‐defined Ar‐Ar degassing ages for inclusions from two other IABs, EET (Elephant Moraine) 83333 and Udei Station, are ?4.32 Gyr, whereas the age for Campo del Cielo varies considerably over about 3.23‐4.56 Gyr. New 129I‐129Xe ages for Caddo County and EET 83333 are 4557.9 ± 0.1 Myr and 4557–4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar‐Ar degassing ages for IABs and related winonaites, the range is ?4.32‐4.53 Gyr, but several IABs give similar Ar ages of 4.50‐4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body and the younger ages to represent later 40Ar diffusion loss. The older Ar‐Ar ages for IABs are similar to Sm‐Nd and Rb‐Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar‐Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al. 1994) are consistent if the time of the postassembly metamorphism was as late as about 4.53 Gyr ago. However, I‐Xe ages reported for some IABs define much older ages of about 4558–4566 Myr, which cannot easily be reconciled with the much younger Ar‐Ar and Sm‐Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I‐Xe ages have very high closure temperatures and were not reset during metamorphism about 4.53 Gyr ago; b) a bias exists in the 40K decay constants which makes these Ar‐Ar ages approximately 30 Myr too young; c) the reported Sm‐Nd and Rb‐Sr ages for Caddo are in error by amounts equal to or exceeding their reported 2‐sigma uncertainties; and d) about 30 Myr after the initial heating that produced differentiation of Caddo silicate and mixing of silicate and metal, a mild metamorphism of the IAB parent body reset the Ar‐Ar ages.  相似文献   

18.
Abstract— The trapped noble gas record of 57 enstatite chondrites (E chondrites) has been investigated. Basically, two different gas patterns have been identified dependent on the petrologic type. All E chondrites of type 4 to 6 show a mixture of trapped common chondritic rare gases (Q) and a subsolar component (range of elemental ratios for E4–6 chondrites: 36Ar/132Xe = 582 ± 270 and 36Ar/84Kr = 242 ± 88). E3 chondrites usually contain Q gases, but also a composition with lower 36Ar/132Xe and 36Ar/84Kr ratios, which we call sub‐Q (36Ar/132Xe = 37.0 ± 18.0 and 36Ar/84Kr = 41.7 ± 18.1). The presence of either the subsolar or the sub‐Q signature in particular petrologic types cannot be readily explained by parent body metamorphism as postulated for ordinary chondrites. We therefore present a different model that can explain the bimodal distribution and composition of trapped heavy noble gases in E chondrites. Trapped solar noble gases have been observed only in some E3 chondrites. About 30% of each group, EH3 and EL3 chondrites, amounting to 9% of all analyzed E chondrites show the solar signature. Notably, only one of those meteorites has been explicitly described as a regolith breccia.  相似文献   

19.
We report a petrographic and mineralogical survey of Paris, a new CM chondrite considered to be the least‐altered CM identified so far (Hewins et al. 2014 ). Compared to other CMs, Paris exhibits (1) a higher concentration of Fe‐Ni metal beads, with nickel contents in the range 4.1–8.1 wt%; (2) the systematic presence of thin lamellae and tiny blebs of pentlandite in pyrrhotite grains; and (3) ubiquitous tochilinite/cronstedtite associations with higher FeO/SiO2 and S/SiO2 ratios. In addition, Paris shows the highest concentration of trapped 36Ar reported so far for a CM chondrite (Hewins et al. 2014 ). In combination with the findings of previous studies, our data confirm the reliability of (1) the alteration sequence based on the chemical composition of tochilinite/cronstedtite associations to quantify the fluid alteration processes and (2) the use of Cr content variability in type II ferroan chondrule olivine as a proxy of thermal metamorphism. In contrast, the scales based on (1) the Fe3+ content of serpentine in the matrix to estimate the degree of aqueous alteration and (2) the chemical composition of Fe‐Ni metal beads for quantifying the intensity of the thermal metamorphism are not supported by the characteristics of Paris. It also appears that the amount of trapped 36Ar is a sensitive indicator of the secondary alteration modifications experienced by chondrites, for both aqueous alteration and thermal metamorphism. Considering Paris, our data suggest that this chondrite should be classified as type 2.7 as it suffered limited but significant fluid alteration and only mild thermal metamorphism. These results point out that two separated scales should be used to quantify the degree of the respective role of aqueous alteration and thermal metamorphism in establishing the characteristics of CM chondrites.  相似文献   

20.
Abstract— This is a report on 40Ar-39Ar studies of 7 low petrographic type L and H chondrites from Antarctica. From petrographic similarities it has been argued that the L3 chondrites ALHA77015, ?77167, ?77249, and ?77260 are pieces from a common fall (McKinley et al., 1981). Our results now confirm this supposition: The four meteorites have identical characteristic Ar-degassing patterns, very similar K, Ca, Cl, and 36Artrapped contents, and similar 40Ar-39Ar ages of <4 Ga which are rather unusual for ordinary chondrites and might be due to shock. The undulating age patterns could be due to weathering or to 39Ar recoil. The L4 chondrite ALHA77230 shows no age plateau and only a lower limit for the time of a severe degassing, 4.0 Ga, can be given. ALHA77226 and RKPA78002, two H4 chondrites, exhibit reasonably well defined age plateaus at about 4.3 and 4.4 Ga. Two individual chondrules from RKPA78002 have the same age as the whole rock sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号