首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Meteorite impact‐generated accretionary lapilli are not well studied. The recently discovered distal ejecta from the 1850 Ma Sudbury impact event contain abundant accretionary lapilli generated during the impact and deposited at great distances from the crater. We petrographically and geochemically examined lapilli from five sites (McClure, Connors Creek, Hwy 588, Pine River, and Grand Trunk Pacific, approximately 480–750 km from the center of the Sudbury structure). The compositions of quartz, K‐feldspar, calcite, biotite, and chlorite minerals are similar to each other in all of the samples, although the relative proportions of the minerals vary from site to site. The lapilli occur in a matrix of coarse‐grained quartz, carbonate, and feldspar grains. Zonation within lapilli appears to be due to grain size distribution rather than compositional variation. The inner zones are coarser grained than outer zones. The relative abundances of calcite, phyllosilicates, and feldspars are similar in each zone within individual lapilli. A meteoritic component is indicated by up to 1.8 ppb Ir in one lapillus from the Pine River site, and Ni and Cr ratios are on a chondritic trend line for many of the lapilli. Mechanisms previously proposed for accretionary lapilli formation seem inadequate to explain deposition of distal accretionary lapilli resulting from impact events. A new mechanism for upper atmospheric accretion is proposed, whereby ash ejected from impact events concentrates at altitudes of neutral buoyancy, where it then accretes and is deposited later than ballistically emplaced particles. Likely, multiple processes are taking place in the chaotic postimpact environment.  相似文献   

2.
Abstract— The Lonar crater, India, is the only well‐preserved simple crater on Earth in continental flood basalts; it is excavated in the Deccan trap basalts of Cretaceous‐Tertiary age. A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post‐impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non‐chondritic or otherwise iridium‐poor impactor.  相似文献   

3.
4.
The present study focuses both on the influence of impact scale on ejecta expansion and on specific features of ejecta deposits around relatively small craters (i.e., those a few kilometers in width). The numerical model is based on the SOVA multimaterial multidimensional hydrocode, considering subaerial vertical impacts only, applying a 2‐D version of the code to projectiles of 100, 300, and 1000 m diameter. Ejecta can roughly be divided into two categories: “ballistic” ejecta and “convective” ejecta; the ballistic ejecta are the ejecta with which the air interacts only slightly, while the convective ejecta motion is entirely defined by the air flow. The degree of particle/air interaction can be defined by the time/length of particle travel before deceleration. Ejecta size‐distributions for the impacts modeled can be described by the same power law, but the size of maximum fragment increases with scale. There is no qualitative difference between the 100 m diameter projectile case and the 300 m diameter projectile impact. In both cases, fine ejecta decelerate in the air at a small distance from launching point and then rise to the stratosphere by air flows induced by the impacts. In the 1000 m‐scale impact, the mass of ejecta is so large that it moves the atmosphere itself to high altitudes. Thus, the atmosphere cannot decelerate even the fine ejecta and they consequently expand to the rarefied upper atmosphere. In the upper atmosphere, even fine ejecta move more or less ballistically and therefore may travel to high altitudes.  相似文献   

5.
The 3.6 Ma El'gygytgyn impact structure, located in northeast Chukotka in Arctic Russia, was largely formed in acidic volcanic rocks. The 18 km diameter circular depression is today filled with Lake El'gygytgyn (diameter of 12 km) that contains a continuous record of lacustrine sediments of the Arctic from the past 3.6 Myr. In 2009, El'gygytgyn became the focus of the International Continental Scientific Drilling Program (ICDP) in which a total of 642.4 m of drill core was recovered. Lithostratigraphically, the drill cores comprise lacustrine sediment sequences, impact breccias, and deformed target rocks. The impactite core was recovered from 316.08 to 517.30 meters below lake floor (mblf). Because of the rare, outstanding recovery, the transition zone, ranging from 311.47 to 317.38 m, between the postimpact lacustrine sediments and the impactite sequences, was studied petrographically and geochemically. The transition layer comprises a mixture of about 6 m of loose sedimentary and volcanic material containing isolated clasts of minerals and melt. Shock metamorphic effects, such as planar fractures (PFs) and planar deformation features (PDFs), were observed in a few quartz grains. The discoveries of silica diaplectic glass hosting coesite, kinked micas and amphibole, lechatelierite, numerous impact melt shards and clasts, and spherules are associated with the impact event. The occurrence of spherules, impact melt clasts, silica diaplectic glass, and lechatelierite, about 1 m below the onset of the transition, marks the beginning of the more coherent impact ejecta layer. The results of siderophile interelement ratios of the transition layer spherules give indications of the relative contribution of the meteoritical component.  相似文献   

6.
Abstract— The ~400 Ma old Ilyinets impact structure was formed in the Precambrian basement of the Ukrainian Shield and is now mostly covered by Quaternary sediments. Various impact breccias and melts are exposed in its southern section. The crater is a complex structure with a central uplift that is surrounded by an annular deposit of breccias and melt rocks. In the annulus, brecciated basement rocks are overlain by up to 80 m of glass-poor suevitic breccia, which is overlain (and partly intercalated) by glass-rich suevite with a thickness of up to 130 m. Impact-melt rocks occur within and on top of the suevites—in some cases in the form of devitrified bomb-shaped impact-glass fragments. We have studied the petrographic and geochemical characteristics of 31, mostly shocked, target rock samples (granites, gneisses, and one amphibolite) obtained from drill cores within the structure, and impact breccias and melt rock samples from drill cores and surface exposures. Multiple sets of planar deformation features (PDFs) are common in quartz, potassium feldspar, and plagioclase of the shocked target rocks. The breccias comprise more or less devitrified impact melt with shocked clasts. The impact-melt rocks (“bombs”) show abundant vesicles and, in some cases, glass is still present as brownish patches and schlieren. All impact breccias (including the melt rocks) are strongly altered and have significantly elevated K contents and lower Na contents than the target rocks. The alteration could have occurred in an impact-induced hydrothermal system. The bomb-shaped melt rocks have lower Mg and Ca contents than other rock types at the crater. Compared to target rocks, only minor enrichments of siderophile element contents (e.g., Ni, Co, Ir) in impact-melt rocks were found.  相似文献   

7.
We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium‐grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA‐ICP‐MS) analyses as a best‐available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI‐normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites. Merrillite is the major REE carrier and has a flat REE pattern with slight depletion of Eu, parallel to REE patterns of merrillites from other basaltic shergottites. The oxidation state of NWA 2975 calculated from Fe‐Ti oxide pairs is NNO‐1.86, close to the QFM buffer. NWA 2975 represents a sample from the oxidized and enriched shergottite group, and our measurements and constraints on its origin are consistent with the hypothesis of two distinct Martian mantle reservoirs: a reduced, LREE‐depleted reservoir and an oxidized, LREE‐enriched reservoir. Stishovite, possibly seifertite, and dense SiO2 glass were also identified in the meteorite, allowing us to infer that NWA 2975 experienced a realistic shock pressure of ~30 GPa.  相似文献   

8.
Abstract— The Acraman impact ejecta from Bunyeroo Gorge in the central Flinders Ranges consist of clast-bearing and sandy sublayers set in a shale host rock. A calculated transient crater diameter for the Acraman impact of at least 34 km was obtained from average thicknesses and estimated distances of the ejecta from the impact in the Gawler Ranges. The ejecta contain numerous grains of quartz and zircon that display impact-produced features, including one or more sets of decorated planar deformation features. There is also much unshocked material incorporated in the ejecta layer. The coarse-grained ejecta layer embedded within fine-grained sediments allowed easy passage for diagenetic fluids that produced a porous honeycomb structure in the clays and enhanced the content of elements such as Cu, Pb, Zn, and U. The clay fraction of the ejecta layers consists of vermiculite and kaolinite, probably formed from alteration and weathering of glassy components. It appears that quartz and zircon grains are the only remnants unaltered by diagenetic processes.  相似文献   

9.
Abstract— We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study 1) meteorite transfer to Earth, and 2) reaccumulation of an expelled mantle in giant‐impact scenarios seeking to explain Mercury's large core. In the context of meteorite transfer during the last 30 Myr, we note that Mercury's impact ejecta leave the planet's surface much faster (on average) than other planets in the solar system because it is the only planet where impact speeds routinely range from 5 to 20 times the planet's escape speed; this causes impact ejecta to leave its surface moving many times faster than needed to escape its gravitational pull. Thus, a large fraction of Mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth‐crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr (typical of stony meteorites from the asteroid belt) and show that several percent of the high‐speed ejecta reach Earth (a factor of 2–3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. Similar quantities of material reach Venus. These calculations also yield measurements of the re‐accretion time scale of material ejected from Mercury in a putative giant impact (assuming gravity is dominant). For Mercurian ejecta escaping the gravitational reach of the planet with excess speeds equal to Mercury's escape speed, about one third of ejecta reaccretes in as little as 2 Myr. Thus collisional stripping of a silicate proto‐Mercurian mantle can only work effectively if the liberated mantle material remains in small enough particles that radiation forces can drag them into the Sun on time scale of a few million years, or Mercury would simply re‐accrete the material.  相似文献   

10.
Abstract— A layer of tektite glass and shock-metamorphosed grains found in an upper Eocene section of core 21 from DSDP Site 612 taken on the continental slope off New Jersey may belong to the North American tektite strewn field. However, the Site 612 glasses generally have higher K2O and lower Na2O contents for a given SiO2 content and different Sr and Nd isotopic compositions. In order to better define the layer, a series of samples was taken continuously through the layer at 1 cm intervals. Tektite fragments are in an 8 cm thick layer; microtektites are concentrated in the upper 4 cm, while spherules with “crystalline” textures (microkrystites) are concentrated in the lower half of the layer. Millimeter-size splash forms are mostly in the lower part of the tektite-bearing layer. Rock and mineral grains showing evidence of shock metamorphism are abundant in the upper half of the tektite-bearing layer. Coesite is abundant, and stishovite was found in one rock fragment. The size and abundance of the tektite glass and the abundance of shocked debris indicate that Site 612 is relatively close to the source crater, which may be to the north of Site 612 on the coastal plain or adjacent continental shelf.  相似文献   

11.
The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement‐derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size‐sorting and subtle, discontinuous layers occur locally. Quartz and K‐feldspar are the main sand‐size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K‐feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer‐grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean‐resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.  相似文献   

12.
From the light emitted during impacts of secondary particles produced during hypervelocity primary impacts, the velocities and relative masses of these ejecta were determined as a function of the angle between the ejection direction and the target surface. The velocity of the ejecta increases with increasing impact velocity and decreasing ejection angle. The ratio of the maximum ejecta velocity to the primary impact velocity decreases with increasing impact speed. The main fraction of the secondary particles is ejected in rather small angular intervals of about 10° width in elevation. The ejection angle of the main fraction of the ejecta mass increases with increasing impact velocity.  相似文献   

13.
Abstract— The impact breccias encountered in drill hole Yaxcopoil‐1 (Yax‐1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine‐grained top (unit 3; 23 m thick; nuée ardente) and a coarse breccia (unit 4; ~15 m thick) below. As such, they consist of a mélange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (~24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic‐matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super‐heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax‐1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the K/T impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.  相似文献   

14.
Abstract— Chicxulub and Sudbury are 2 of the largest impact structures on Earth. Research at the buried but well‐preserved Chicxulub crater in Mexico has identified 6 concentric structural rings. In an analysis of the preserved structural elements in the eroded and tectonically deformed Sudbury structure in Canada, we identified ring‐like structures corresponding in both radius and nature to 5 out of the 6 rings at Chicxulub. At Sudbury, the inner topographic peak ring is missing, which if it existed, has been eroded. Reconstructions of the transient cavities for each crater produce the same range of possible diameters: 80–110 km. The close correspondence of structural elements between Chicxulub and Sudbury suggests that these 2 impact structures are approximately the same size, both having a main structural basin diameter of ?150 km and outer ring diameters of ?200 km and ?260 km. This similarity in size and structure allows us to combine information from the 2 structures to assess the production of shock melt (melt produced directly upon decompression from high pressure impact) and impact melt (shock melt and melt derived from the digestion of entrained clasts and erosion of the crater wall) in large impacts. Our empirical comparisons suggest that Sudbury has ?70% more impact melt than does Chicxulub (?31,000 versus ?18,000 km3) and 85% more shock melt (27,000 km3 versus 14,500 km3). To examine possible causes for this difference, we develop an empirical method for estimating the amount of shock melt at each crater and then model the formation of shock melt in both comet and asteroid impacts. We use an analytical model that gives energy scaling of shock melt production in close agreement with more computationally intense numerical models. The results demonstrate that the differences in melt volumes can be readily explained if Chicxulub was an asteroid impact and Sudbury was a comet impact. The estimated 70% difference in melt volumes can be explained by crater size differences only if the extremes in the possible range of melt volumes and crater sizes are invoked. Preheating of the target rocks at Sudbury by the Penokean Orogeny cannot explain the excess melt at Sudbury, the majority of which resides in the suevite. The greater amount of suevite at Sudbury compared to Chicxulub may be due to the dispersal of shock melt by cometary volatiles at Sudbury.  相似文献   

15.
Abstract— The Hess Offset is a steeply dipping dyke located 12–15 km north of the 1.85 Ga Sudbury igneous complex (SIC) within the 200–250 km diameter Sudbury impact structure. It is up to 60 m wide and strikes subconcentrically to the SIC for at least 23 km. The main phase of the dyke is granodioritic, but it conforms with what is locally referred to as Quartz Diorite: a term used for all the Offset Dykes of the Sudbury impact structure. Rare earth element data shows that the Hess Offset is genetically related to the SIC. Hess is most closely affiliated with an evolved Felsic Norite component of SIC and not bulk impact melt. This indicates that Hess was emplaced during fractionation of the impact melt sheet, rather than immediately following impact. The main Quartz Diorite phase of the dyke comprises a quartz + plagioclase + hornblende + biotite ± clinopyroxene ± orthopyroxene assemblage. Critically, the Hess Offset occupies a concentric fault system that marks the northern limit of a pseudotachylyte-rich, shatter cone-bearing annulus about the SIC. This fault system was active during the modification stage of the impact process.  相似文献   

16.
Abstract— Analytical scanning electron microscopy has been used to investigate the surface textures and compositions of newly exposed shatter cones from the 1.85 Ga Sudbury impact structure, Canada. Unusual surface microstructures are observed at the micron scale, including silicate melt smears, melt fibres and melt splats. Silicate and Ni-rich spherules up to 5 μm in diameter adorn earlier-formed surface features, and we interpret these to be condensates formed due to shock-induced vaporization of the shatter cone surfaces. The development of striations on the shatter cones is attributed to shock-related fracture and slip. Formation of melts and spherules indicates that the highest ranks of shock metamorphism (Stages IV and V) were realized, but only on a very localized scale. Shatter cone surfaces are, therefore, likely sites for the development of high-pressure polymorphs and, if the chemistry is appropriate, fullerenes. As such, they may be equivalent to “Type A” pseudotachylytes and shock veins in meteorites.  相似文献   

17.
Abstract— The Lockne impact event took place in a Middle Ordovician (455 Ma) epicontinental sea. The impact resulted in an at least 13.5 km wide, concentric crater in the sea floor. Lockne is one of very few locations where parts of an ejecta layer have been preserved outside the crater structure. The ejecta from the Lockne impact rests on progressively higher stratigraphic levels with increasing distance from the crater, hence forming a slightly inclined discontinuity surface in the pre‐impact strata. We report on a ~30 cm thick sandy layer at Hallen, 45 km south of the crater centre. This layer has a fining upward sequence in its lower part, followed by low‐angle cross‐laminations indicating two opposite current directions. It is rich in quartz grains with planar deformation features and contains numerous, up to 15 cm large, granite clasts from the crystalline basement at the Lockne impact site. The layer is within a sequence dated to the Baltoniodus gerdae conodont subzone. The dating is corroborated by chitinozoans indicating the latest Kukruse time below and the late Idavere above the impact layer. According to the chitinozoans biostratigraphy, some erosion may have occurred because of deposition of the impact layer. The Hallen outcrop, today 45 km from the centre of the Lockne crater, is at present the most distant accessible occurrence of ejecta from the Lockne impact. It is also the most distant location so far found where the resurge of water towards the crater has affected the bottom sediments. A greater crater diameter than hitherto assumed, thus representing greater impact energy, might explain the extent of the ejecta blanket. Fluidisation of ejecta, to be expected at a marine‐target impact, might furthermore have facilitated the wide distribution of ejecta.  相似文献   

18.
Abstract— Spherules and irregular shard-like particles consisting of authigenic mineral phases have been identified in the Acraman impact ejecta horizon preserved within the late Proterozoic shales of the Adelaide Geosyncline, South Australia. The spherules (150 μm to 1 mm diameter) range in shape from near-spherical through ellipsoidal to extended ellipsoidal-dumbbell. The distinctive morphology of the spherules and shard-like particles and their restriction to the ejecta horizon, suggest that they were deposited initially as glassy bodies which subsequently have been pseudomorphed by more stable authigenic phases like calcite, quartz, albite, and barite.  相似文献   

19.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

20.
Abstract– The 1.4–1.6 km thick Onaping Formation consists of a complex series of breccias and “melt bodies” lying above the Sudbury Igneous Complex (SIC) at the Sudbury impact structure. Based on the presence of shocked lithic clasts and various “glassy” phases, the Onaping has been described as a “suevitic” breccia, with an origin, at least in part, as fallback material. Recent mapping and a redefined stratigraphy have emphasized similarities and differences in its various vitric phases, both as clast types and discrete intrusive bodies. The nature of the Onaping and that of other “suevitic” breccias overlying impact melt sheets is reviewed. The relative thickness, internal stratigraphic and lithological character, and the relative chronology of depositional units indicate multiple processes were involved over some time in the formation of the Onaping. The Sudbury structure formed in a foreland basin and water played an essential role in the evolution of the Onaping, as indicated by a major hydrothermal system generated during its formation. Taken together, observations and interpretations of the Onaping suggest a working hypothesis for the origin of the Onaping that includes not only impact but also the interaction of sea water with the impact melt, resulting in repeated explosive interactions involving proto‐SIC materials and mixing with pre‐existing lithologies. This is complicated by additional brecciation events due to the intrusion of proto‐SIC materials into the evolving and thickening Onaping. Fragmentation mechanisms changed as the system evolved and involved vesiculation in the formation of the upper two‐thirds of the Onaping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号