首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The asteroid 4 Vesta is one of the very few heavenly bodies to have been linked to samples on Earth: the howardite‐eucrite‐diogenite (HED) meteorite suite. This large and diverse suite of meteorites provides a detailed picture of Vesta's igneous and postigneous history. We have used the range of igneous rock types and compositions in the HED suite to test a series of chemical models for solidification processes following peak melting (magma ocean) conditions on Vesta. Fractional crystallization cannot have been a dominant early process in the magma ocean because it leads to excessive Fe‐enrichment in the melt. Models that are dominated by equilibrium crystallization cannot produce orthopyroxene cumulates (diogenites). Our best models invoke 60–70% equilibrium crystallization of a magma ocean followed by continuous extraction of the residual melt into shallow magma chambers. Fractional crystallization in these magma chambers combined with continuous or periodic addition of more melt from the slowly compacting crystal mush (magmatic recharge) can produce all of the igneous HED lithologies (noncumulate and cumulate eucrites, diogenites, dunites, harzburgites, and olivine diogenites). Magmatic recharge can also explain the narrow range in eucrite compositions and the variability of incompatible trace element concentrations in diogenites. We predict an internal structure for Vesta that permits excavation of the HEDs during the formation of the Rheasilvia basin, while remaining consistent with observations from the Dawn mission and most impact models.  相似文献   

2.
Abstract— We report on the major and trace element abundances of 18 diogenites, and O‐isotopes for 3 of them. Our analyses extend significantly the diogenite compositional range, both in respect of Mg‐rich (e.g., Meteorite Hills [MET] 00425, MgO = 31.5 wt%) and Mg‐poor varieties (e.g., Dhofar 700, MgO = 23 wt%). The wide ranges of siderophile and chalcophile element abundances are well explained by the presence of inhomogeneously distributed sulfide or metal grains within the analyzed chips. The behavior of incompatible elements in diogenites is more complex, as exemplified by the diversity of their REE patterns. Apart from a few diogenite samples that contain minute amounts of phosphate, and whose incompatible element abundances are unlike the orthopyroxene ones, the range of incompatible element abundances, and particularly the range of Dy/Yb ratios in diogenites is best explained by the diversity of their parental melts. We estimate that the FeO/MgO ratios of the diogenite parental melts range from about 1.4 to 3.5 and therefore largely overlap the values obtained for non‐cumulate eucrites. Our results rule out the often accepted view that all the diogenites formed from parental melts more primitive than eucrites during the crystallization of a magma ocean. Instead, they point to a more complex history, and suggest that diogenites were derived from liquids produced by the remelting of cumulates formed from the magma ocean.  相似文献   

3.
Abstract— Available evidence strongly suggests that the HED (howardite, eucrite, diogenite) meteorites are samples of asteroid 4 Vesta. Abundances of the moderately siderophile elements (Ni, Co, Mo, W and P) in the HED mantle indicate that the parent body may have been completely molten during its early history. During cooling of a chondritic composition magma ocean, equilibrium crystallization is fostered by the suspension of crystals in a convecting magma ocean until the crystal fraction reaches a critical value near 0.80, when the convective system freezes and melts segregate from crystals by gravitational forces. The extruded liquids are similar in composition to Main Group and Stannern trend eucrites, and the last pyroxenes to precipitate out of this ocean (before convective lockup) span the compositional range of the diogenites. Subsequent fractional crystallization of a Main Group eucrite liquid, which has been isolated as a body of magma, produces the Nuevo Laredo trend and the cumulate eucrites. The predicted cumulate mineral compositions are in close agreement with phase compositions analyzed in the cumulate eucrites. Thus, eucrites and diogenites are shown to have formed as part of a simple and continuous crystallization sequence starting with a magma ocean environment on an asteroidal size parent body that is consistent with Vesta.  相似文献   

4.
Abstract— Diogenites are recognized as a major constituent of the howardite, eucrite and diogenite (HED) meteorite group. Recently, several papers (Mittlefehldt, 1994; Fowler et al, 1994, 1995) have identified trace-element systematics in diogenites that appeared to mimic simple magmatic processes that involved large degrees of crystallization (up to 95% orthopyroxene) of basalt with extremely high normative hypersthene. Such a crystallization scenario linking all the diogenites is highly unlikely. The purpose of this study is to explore other possible models relating the diogenites. Computational major-element melting models of a variety of different potential bulk compositions for the eucrite parent body (EPB) mantle indicate that these compositions show a similar sequence in residuum mineral assemblage with increasing degrees of partial melting. Numerous bulk compositions would produce melts with Mg# appropriate for diogenitic parent magmas at low to moderate degrees of partial melting (15% to 30%). These calculations also show that melts with similar Mg# and variable incompatible element concentrations may be produced during small to moderate degrees of EPB mantle melting. The trace-element characteristic of the orthopyroxene in diogenites does not support a model for large amounts of fractional crystallization of a single “hypersthene normative” basaltic magma following either small-scale or large-scale EPB mantle melting. Small degrees of fractional crystallization of a series of distinct basaltic magmas are much more likely. Only two melting models that we considered hold any promise for producing different batches of “diogenitic magmas.” The first model involves the fractional melting of a homogeneous source that produces parental magmas to diogenites with an extensive range of incompatible elements and limited variations in Mg#. There are several requirements for this model to work. The first requirement of this model is that the Dorthopyroxene/melt must change during melting or crystallization to compress the range of incompatible elements in the calculated diogenitic magmas. The second prerequisite is that either some of the calculated diogenitic magmas are parental to eucrites or the Mg# in diogenitic magmas are influenced by slight changes in oxygen fugacity during partial melting. The second model involves batch melting of a source that reflects accretional heterogeneities capable of generating diogenitic magmas with the calculated Mg# and incompatible element contents. Both of these models require small to moderate degrees of partial melting that may limit the efficiency of core separation.  相似文献   

5.
Abstract— An evaluation of trapped melts effects during crystallization and subsolidus equilibration of cumulates is necessary to constrain the composition of their parental magmas. In this paper, a simple mass balance approach is described. It allows estimation of trace element abundances in these parental melts from phase compositions. It is used to discuss the genesis of cumulate eucrites and diogenites. The REE behavior is in full agreement with the view that cumulate eucrites formed from melts similar to noncumulate eucrites. Trapped melt fractions ranging from <10 wt% for Moama to ?30 wt% for Moore County were involved. The origin of diogenites is more complex. The assumption that eucrites and diogenites shared the same parental melts cannot satisfactorily explain the diversity of incompatible trace element ratios (e.g., Dy/Yb) observed in diogenitic orthopyroxenes, even if interstitial melt effects are taken into account. Moreover, some diogenites unambiguously crystallized from magmas displaying significant HREE (heavy rare earth elements) enrichments. More likely, diogenites formed from distinct batches of parental magmas, as previously proposed by Mittlefehldt (1994), Fowler et al. (1995), and Shearer (1997).  相似文献   

6.
Numerous petrologic and geochemical studies so far on the howardite, eucrite, and diogenite (HED) meteorites have produced various crystallization scenarios for their parent body, believed to be the differentiated asteroid 4 Vesta. Structural analyses of diogenites can reveal important insights into postcrystallization deformation on the parent body. Recently published results (Tkalcec et al. 2013 ) of structural analysis on the olivine‐rich diogenite NWA 5480 reveal that it underwent solid‐state plastic deformation, although not at the base of a magma chamber. Dynamic mantle downwelling has been proposed as a plausible deformation mechanism (Tkalcec et al. 2013 ). The purpose of this study is to investigate whether the plastic deformation found in NWA 5480 is an isolated case. We expand the structural analysis on NWA 5480 and extend it to NWA 5784 and MIL 07001,6, two other samples of rare olivine‐rich diogenites, using electron‐backscattered‐diffraction (EBSD) techniques. Our EBSD results show that the diogenites analyzed in this study underwent solid‐state plastic deformation, confirming that the observed deformation of NWA 5480 was not an isolated case on the diogenite parent body. The lattice‐preferred orientations (LPOs) of olivine in NWA 5784 and NWA 5480 are clearly distinct from that typical for cumulate rocks at the base of magma chambers, indicating a different stress environment and a different deformation mechanism. The LPO of olivine in MIL 07001 is less conclusive. The structural results of this study suggest that plastic deformation occurred on the diogenite parent body at high temperatures (1273 < T ≤ 1573 K) in the solid state, i.e., after crystallization of the diogenites themselves, in a dynamic environment with active stress fields.  相似文献   

7.
We report the results of nominally anhydrous equilibrium and fractional crystallization experiments on a synthetic Yamato‐980459 (Y98) bulk composition at 0.5 GPa. These experiments allow us to test a suggested fractional crystallization model, calculated using MELTS by Symes et al. ( 2008 ), in which a Y98‐like initial liquid yielded a magma closely resembling the bulk composition of QUE 94201. Although the two meteorites cannot be cogenetic owing to their age difference, they are thought to represent bona fide magmatic liquids rather than products of crystal accumulation, as are most Martian basaltic meteorites. Hence, understanding possible petrogenetic links between these types of liquids could be revealing about processes of melting and crystallization that formed the range of Martian basalts. We find that Y98 can, in fact, generate a residual liquid closely resembling QUE, but only after a very different crystallization process, and different degree of crystallization, than that modeled using MELTS. In addition, both the identity and sequence of crystallizing phases are very different between model and experiments. Our fractional crystallization experiments do not produce a QUE‐like liquid, and the crystallizing phases are an even poorer match to the MELTS‐calculated compositions than in the equilibrium runs. However, residual liquids from our experiments define a liquid line of descent that encompasses bulk compositions of parental melts calculated for several Martian basaltic meteorites, suggesting that the known Martian basaltic meteorites had their ultimate origin from the same or very similar source lithologies. These are, in turn, similar to source rocks modeled by previous studies as products of extensive crystallization of an initial Martian magma ocean.  相似文献   

8.
Abstract– We have done bulk rock compositional analyses (INAA, ICP‐MS) and petrologic study of a suite of diogenite meteorites. Most contain orthopyroxenes with mg#s of 70.6–79.0. Meteorite Hills (MET) 00425 is magnesian (mg# of 83.9). Lewis Cliff (LEW) 88011 contains orthopyroxene grains of varying mg# (76.3–68.6). Queen Alexandra Range (QUE) 93009 (orthopyroxene mg# 70.6) contains coarse‐grained noritic clasts (plagioclase An84.7–88.3), and is rich in incompatible trace elements. It has Eu/Eu* < 1, indicating that cumulate norites do not dominate its trace element inventory. Queen Alexandra Range 93009 may be transitional between diogenites and magnesian cumulate eucrites. Lewis Cliff 88679, a dimict breccia of harzburgite and orthopyroxenite, has anomalously low concentrations of highly incompatible elements (e.g., Nb, La, Ta, U) compared to other diogenites, but is similar to them in less highly incompatible elements (e.g., Y, Zr, Yb, Hf). It is unlikely that this characteristic reflects a low proportion of a trapped melt component. The highly incompatible elements were likely mobilized after impact mixing of the two parent lithologies. Graves Nunataks 98108 shows an extreme range in Eu/Eu* attributable to the heterogeneous distribution of plagioclase; one sample has the lowest Eu/Eu* among diogenites. We find no compelling evidence to support the hypothesis that diogenite parent magmas were contaminated by partial melts of the eucritic crust. We posit that subsolidus equilibration between orthopyroxene and minor/trace phases (including phosphates) resulted in preferential redistribution of Eu2+ relative to Eu3+ and other rare earth elements, and results in anomalously low Eu/Eu* in samples leached in acids that dissolve phosphates.  相似文献   

9.
Abstract— According to a currently popular model for petrogenesis on the howardite, eucrite, and diogenite (HED) parent asteroid, the diogenites are not comagmatic with most eucrites but instead formed in separate orthopyroxenite-dominated plutons. This model can be tested for consistency with mass balance for MgO and FeO, assuming the overall diogenite/(diogenite + eucrite) ratio, d, of the parent asteroid is at least comparable to the average d for the eucrite + diogenite dominated howardite regolith breccias. Average mg# (=MgO/[MgO + FeO]) is much lower for eucrites, especially noncumulate eucrites, than for diogenites. Unless the diogenite parent magmas eventually produced a large proportion of low-mg# residual basalt and gabbro (RBG), the implied initial magma's mg# is vastly higher than that of any noncumulate eucrite. Starting from a source previously depleted by putative primary eucrite genesis, melt mg# can be estimated as a function of the exchange reaction KD and degree of melting. Using several very conservative assumptions (e.g., assuming that the total [MgO + FeO] concentration is nearly the same in the nascent melt as in the residual solids), the degree of melting required to yield a melt with mg# high enough to satisfy mass balance, without implying an RBG component that accounts for >50% of all eucrites, is an implausibly high 60–80 wt%. The separate orthopyroxenitic plutons (SOP) model also seems inconsistent with the uniform density of melts across the diogenite-eucrite compositional spectrum (2.77–2.82 g/cm3), which implies that diogenitic magmas should have been as capable as eucrites of extruding to form lavas. This difficulty cannot be reduced by simply assuming that later-formed magmas were systematically both more plutonic and more MgO-rich than earlier ones, because the plutonic cumulate eucrites equilibrated with melts systematically lower in mg# than noncumulate eucrites. Conceivably, the bulk mg# of the asteroid's silicate system was increased between primary-melt eucrite genesis and SOP diogenite genesis by graphite-fueled reduction of FeO. However, the graphite oxidation process generates a huge proportion of gas, which would have enhanced the buoyancy of the nascent diogenite-parent magmas, thus exacerbating the difficulty of achieving the implied high degrees of partial melting. To avoid these difficulties but still form most eucrites as rapidly cooled extrusives, I propose the NERD (noncumulate eucrites as extruded residua of diogenites) model. In this model, the diogenites form as early cumulates from a large magma system (probably a global “magma ocean”) that yields a large proportion of eucritic melt as residuum. This residual melt zone undergoes relatively little crystallization during a period when it is episodically tapped to produce extrusions, dikes and sills of rapidly cooled noncumulate eucrites. Slight (~5–10%) porosity in the nascent eucritic crust keeps it marginally buoyant over the residual melt zone. The common thermal metamorphism of noncumulate eucrites results from baking by superjacent flows during the episodic venting of the melt zone. The NERD model's greatest advantage is that it does not require implausibly high degrees of localized melting in the mature stages of igneous evolution of the HED asteroid.  相似文献   

10.
Trace element concentrations in pyroxene, plagioclase, and olivine were measured in five diogenite breccias previously identified as containing distinct harzburgitic (ol+opx) and orthopyroxenitic (opx) lithologies (dimict). Three samples show two distinct populations of pyroxene trace element abundances, supporting their classification as dimict. These three meteorites show increases in Y, Yb, and HREE concentrations from harzburgitic to orthopyroxenitic pyroxenes, supporting the hypothesis that the lithologies are related through fractional crystallization whereby harzburgite olivine and pyroxene crystallized from the magma first followed by orthopyroxenite pyroxene. Depletions in LREE and Eu concentrations in the orthopyroxenitic lithology are most likely due to equilibration with LREE and Eu‐rich phases, likely plagioclase, which is found primarily in that lithology. Two samples do not show evidence supporting a dimict classification. Large pyroxene trace element variation in one sample indicates that it is polymict, while uniform trace element distribution in the other suggests that it may be a monomict breccia.  相似文献   

11.
Abstract— We have analyzed the modal abundances of 23 of the known 24 diogenites in 31 thin sections using an energy dispersive spectrometer (EDS) and automated phase distribution analysis software. Orthopyroxene is predictably the most abundant phase, ranging from 27.7 vol% to 99.8 vol% in these samples. The grand average mode of all the analyzed diogenites includes the “olivine diogenites” but not ALH 85015, a probable howardite, and ALHA81208, a sample with an abundant silica phase. The grand average of these 21 diogenites is: orthopyroxene 92.2 vol%, olivine 4.2 vol%, clinopyroxene 1.2 vol%, chromite 0.9 vol%, plagioclase 0.4 vol%, FeNi metal 0.1 vol%, troilite 0.6 vol%, and silica phase 0.4 vol%. Plagioclase feldspar is extremely depleted in all samples, with modal abundance from none detected to 4.6 vol% in range. Such a low volume of plagioclase may indicate that the diogenite parental melts originated in a source region depleted in Al (Warren, 1985; Stolper, 1975), which is consistent with crystallization from a melt derived from material that had previously experienced extraction of a eucrite-type melt.  相似文献   

12.
The large collection of howardite‐eucrite‐diogenite (HED) meteorites allows us to study the initial magmatic differentiation of a planetesimal. We report Pb‐Pb ages of the unequilibrated North West Africa (NWA) 4215 and Dhofar 700 diogenite meteorites and their mass‐independent 26Mg isotope compositions (26Mg*) to better understand the timing of differentiation and crystallization of their source reservoir(s). NWA 4215 defines a Pb‐Pb age of 4484.5 ± 7.9 Myr and has a 26Mg* excess of +2.3 ± 1.6 ppm whereas Dhofar 700 has a Pb‐Pb age of 4546.4 ± 4.7 Myr and a 26Mg* excess of +25.5 ± 1.9 ppm. We interpret the young age of NWA 4215 as a thermal overprint, but the age of Dhofar 700 is interpreted to represent a primary crystallization age. Combining our new data with published Mg isotope and trace element data suggests that approximately half of the diogenites for which such data are available crystallized within the first 1–2 Myr of our solar system, consistent with a short‐lived, early‐formed magma ocean undergoing convective cooling. The other half of the diogenites, including both NWA 4215 and Dhofar 700, are best explained by their crystallization in slowly cooled isolated magma chambers lasting over at least ~20 Myr.  相似文献   

13.
Abstract— If Vesta is the parent body of the howardite, eucrite, and diogenite (HED) meteorites, then geo-chemical and petrologic constraints for the meteorites may be used in conjunction with astronomical constraints for the size and mass of Vesta to (1) determine the size of a possible metal core in Vesta and (2) model the igneous differentiation and internal structure of Vesta. The density of Vesta and petrologic models for HED meteorites together suggest that the amount of metal in the parent body is <25 mass%, with a best estimate of ~5%, assuming no porosity. For a porosity of up to 5% in the silicate fraction of the asteroid, the permissible metal content is <30%. These results suggest that any metal core in the HED parent body and Vesta is not unusually large. A variety of geochemical and other data for HED meteorites are consistent with the idea that they originated in a magma ocean. It appears that diogenites formed by crystal accumulation in a magma ocean cumulate pile and that most noncumulate eucrites (excepting such eucrites as Bouvante and Statinem) formed by subsequent crystallization of the residual melts. Modelling results suggest that the HED parent body is enriched in rare earth elements by a factor of ~2.5–3.5 relative to CI-chondrites and that it has approximately chondritic Mg/Si and Al/Sc ratios. Stokes settling calculations for a Vesta-wide, nonturbulent magma ocean suggest that early-crystallizing magnesian olivine, orthopyroxene, and pigeonite would have settled relatively quickly, permitting fractional crystallization to occur, but that later-crystallizing phases would have settled (or floated) an order of magnitude more slowly, allowing, instead, a closer approach to equilibrium crystallization for the more evolved (eucritic) melts. This would have inhibited the formation of a plagioclase-flotation crust on Vesta. Plausible models for the interior of Vesta, which are consistent with the data for HED meteorites and Vesta, include a metal core (<130 km radius), an olivine-rich mantle (~65–220 km thick), a lower crustal unit (~12–43 km thick) composed of pyroxenite, from which diogenites were derived, and an upper crustal unit (~23–42 km thick), from which eucrites originated. The present shape of Vesta (with ~60 km difference in the maximum and minimum radius) suggests that all of the crustal materials, and possibly some of the underlying olivine from the mantle, could have been locally excavated or exposed by impact cratering.  相似文献   

14.
We report results of systematic experimental simulation of fractional crystallization of a lunar magma ocean (LMO) with the Lunar Primitive Upper Mantle bulk composition. These results complement prior work that simulated equilibrium crystallization. In contrast to previous numerical models for investigating magma ocean solidification processes and implications, our combined program simulates these processes directly using petrologic experimentation. Our experiments mimic LMO crystallization that is fractional throughout the process, rather than switching from initially equilibrium to fractional crystallization partway through. To do this, we adopted an iterative approach in which the starting material for each run is synthesized using the composition of the melt phase from the prior run. We compare our results to those from long-standing numerical models of LMO crystallization and show that although some features of those models are broadly reproduced, there are key differences in liquid lines of descent and the cumulate lithologies generated. Our results can be used to estimate the possible thickness of a primordial lunar crust formed from flotation of plagioclase during magma ocean solidification. Our estimate is greater than that from the recent Gravity Recovery and Interior Laboratory (GRAIL) mission, but consistent with the criteria on which the starting bulk composition was originally calculated. It assumes perfectly efficient separation of all plagioclase formed from the crystallizing magma ocean, which is likely not the case. We also demonstrate that a non-chondritic bulk composition, with respect to trace elements, is not required in order to generate a KREEP (potassium, rare earth elements, and phosphorus) signature from magma ocean crystallization.  相似文献   

15.
Abstract— Diogenites are orthopyroxenites that may contain chromite and olivine as accessory minerals. Howardite breccias contain orthopyroxenite clasts with similar properties compared to monomict diogenites. We used statistical methods and variation plots of major and minor elements in orthopyroxene and chromite to show whether or not howardite orthopyroxenites are related to monomict diogenites, and to assess their petrogenesis. Our results fail to establish any evidence that monomict diogenites are significantly different from howardite orthopyroxenites in terms of major and minor elements. We also found no differences between Antarctic diogenites and non-Antarctic diogenites. Although element variation plots show compelling evidence that most diogenites originated by igneous fractionation, linear trends among the various diogenites and howardite orthopyroxenite clasts are either non-existent or ill-defined. This militates against an origin from a single magma body, but suggests an origin from multiple magma bodies in the parent planetoid.  相似文献   

16.
New petrography, mineral chemistry, and whole rock major, minor, and trace element abundance data are reported for 29 dominantly unbrecciated basaltic (noncumulate) eucrites and one cumulate eucrite. Among unbrecciated samples, several exhibit shock darkening and impact melt veins, with incomplete preservation of primary textures. There is extensive thermal metamorphism of some eucrites, consistent with prior work. A “pristinity filter” of textural information, siderophile element abundances, and Ni/Co ratios of bulk rocks is used to address whether eucrite samples preserve endogenous refractory geochemical signatures of their asteroid parent body (i.e., Vesta), or could have experienced exogenous impact contamination. Based on these criteria, Cumulus Hills 04049, Elephant Moraine 90020, Grosvenor Range 95533, Pecora Escarpment 91245, and possibly Queen Alexander Range 97053 and Northwest Africa 1923 are pristine eucrites. Eucrite major element compositions and refractory incompatible trace element abundances are minimally affected by metamorphism or impact contamination. Eucrite petrogenesis examined through the lens of these elements is consistent with partial melting of a silicate mantle that experienced prior metal–silicate equilibrium, rather than as melts associated with cumulate diogenites. In the absence of the requirement of a large-scale magma ocean to explain eucrite petrogenesis, the interior structure of Vesta could be more heterogeneous than for larger planetary bodies.  相似文献   

17.
Abstract– A few relatively unbrecciated olivine‐rich diogenites consist of an equilibrium assemblage of olivine and magnesian orthopyroxene (harzburgite). More common diogenites with smaller amounts of olivine are breccias containing two distinct orthopyroxenes—one magnesian and one ferroan. These diogenites are mixtures of a harzburgite lithology that is more magnesian, with the “normal” orthopyroxenite lithology that is ferroan and may contain small amounts of plagioclase. Both lithologies likely formed by fractional crystallization in multiple plutons emplaced within the crust of asteroid 4 Vesta. Minor element trends in orthopyroxenes indicate that these plutons exhibited a range of compositions. We propose a revised taxonomy for the HED (howardites, eucrites, and diogenites) suite where all ultramafic samples are referred to as diogenites. Within this group, the prefixes dunitic, harzburgitic, and orthopyroxenitic are used to distinguish diogenites consisting of more than or equal to 90% olivine, olivine + orthopyroxene, and more than or equal to 90% orthopyroxene, respectively. The prefix polymict is used to describe brecciated mixtures of any of these rock types. The recognition that olivine is a significant phase in some diogenites is consistent with spectral interpretations of olivine in a deeply excavated crater on Vesta, and has important implications for the bulk composition and petrogenesis of that body.  相似文献   

18.
Abstract— Nine howardites and two diogenites were recovered from the Pecora Escarpment Icefield (PCA) in 2002. Cosmogenic radionuclide abundances indicate that the samples are paired and that they constituted an approximately 1 m (diameter) meteoroid prior to atmospheric entry. At about 1 m in diameter, the PCA 02 HED group represents one of the largest single pre‐atmospheric pieces of the Vestan surface yet described. Mineral and textural variations were measured in six of the PCA 02 howardites to investigate meter‐scale diversity of the Vestan surface. Mineral compositions span the range of known eucrite and diogenite compositions. Additional non‐diogenitic groups of Mg‐ and Fe‐rich olivine are observed, and are interpreted to have been formed by exogenic contamination and impact melting, respectively. These howardites contain olivine‐rich impact melts that likely formed from dunite‐ and harzburgite‐rich target rocks. Containing the first recognized olivine‐rich HED impact melts, these samples provide meteoritic evidence that olivine‐rich lithologies have been exposed on the surface of Vesta. Finally, we present a new method for mapping distributions of lithologies in howardites using 8 elemental X‐ray maps. Proportions of diogenite and eucrite vary considerably among the PCA 02 howardites, suggesting they originated from a heterogeneous portion of the Vestan surface. While whole sample modes are dominated by diogenite, the finer grain size fractions are consistently more eucritic. This discrepancy has implications for near‐infrared spectral observations of portions of Vesta’s surface that are similar to the PCA 02 howardites, as the finer grained eucritic material will disproportionately dominate the spectra.  相似文献   

19.
Abstract– We investigate the relationship between the petrology and visible–near infrared spectra of the unbrecciated eucrites and synthetic pyroxene–plagioclase mixtures to determine how spectra obtained by the Dawn mission could distinguish between several models that have been suggested for the petrogenesis of Vesta’s crust (e.g., partial melting and magma ocean). Here, we study the spectra of petrologically characterized unbrecciated eucrites to establish spectral observables, which can be used to yield mineral abundances and compositions consistent with petrologic observations. No information about plagioclase could be extracted from the eucrite spectra. In contrast, pyroxene dominates the spectra of the eucrites and absorption band modeling provides a good estimate of the relative proportions of low‐ and high‐Ca pyroxene present. Cr is a compatible element in eucrite pyroxene and is enriched in samples from primitive melts. An absorption at 0.6 μm resulting from Cr3+ in the pyroxene structure can be used to distinguish these primitive eucrites. The spectral differences present among the eucrites may allow Dawn to distinguish between the two main competing models proposed for the petrogenesis of Vesta (magma ocean and partial melting). These models predict different crustal structures and scales of heterogeneity, which can be observed spectrally. The formation of eucrite Allan Hills (ALH) A81001, which is primitive (Cr‐rich) and relatively unmetamorphosed, is hard to explain in the magma ocean model. It could only have been formed as a quench crust. If the magma ocean model is correct, then ALHA81001‐like material should be abundant on the surface of Vesta and the Vestoids.  相似文献   

20.
Several olivine‐phyric shergottites contain enough olivine that they could conceivably represent the products of closed‐system crystallization of primary melts derived from partial melting of the Martian mantle. Larkman Nunatak (LAR) 06319 has been suggested to represent a close approach to a Martian primary liquid composition based on approximate equilibrium between its olivine and groundmass. To better understand the olivine–melt relationship and the evolution of this meteorite, we report the results of new petrographic and chemical analyses. We find that olivine megacryst cores are generally not in equilibrium with the groundmass, but rather have been homogenized by diffusion to Mg# 72. We have identified two unique grain types: an olivine glomerocryst and an olivine grain preserving a primary magmatic boundary that constrains the time scale of eruption to be on the order of hours. We also report the presence of trace oxide phases and phosphate compositions that suggest that the melt contained approximately 1.1% H2O and lost volatiles during cooling, also associated with an increase in oxygen fugacity upon degassing. We additionally report in situ rare earth element measurements of the various mineral phases in LAR 06319. Based on these reported trace element abundances, we estimate the oxygen fugacity in the LAR 06319 parent melt early in its crystallization sequence (i.e., at the time of crystallization of the low‐Ca and high‐Ca pyroxenes), the rare earth element composition of the parent melt, and those of melts in equilibrium with later formed phases. We suggest that LAR 06319 represents the product of closed‐system crystallization within a shallow magma chamber, with additional olivine accumulated from a cumulate pile. We infer that the olivine megacrysts are antecrysts, derived from a single magma chamber, but not directly related to the host magma, and suggest that mixing of antecrysts within magma chambers may be a common process in Martian magmatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号