首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract. Much of the discussion of high deep‐sea diversity has assumed that asymmetric inter‐specific competition will rapidly lead to the elimination of many species unless restrained by extensive differentiation of niches, or the action of predation and/or environmental disturbance. This is true for some habitats, including rocky shores. However, experimental studies indicate that marine soft sediment communities do not function like this. In shallow‐water sediments, competition is usually symmetric and relatively weak. Asymmetric competition that leads to the elimination of one species by another on time scales shorter than one generation is rare, apart from interactions that involve large‐scale modification or disturbance of the sediment. Competition is therefore relatively unimportant as a process structuring communities and the impact of predation is usually to reduce rather than enhance diversity. These results have been largely ignored by the literature on deep‐sea diversity. If deep‐sea communities function in similar ways, coexistence of many species within small areas on short time scales does not need further explanation. We do , however, need to explain why abundances of all species remain bounded on large spatial scales and time scales of several generations. The model of diversity maintenance proposed by Huston (1979) and applied to the deep sea by Rex (1983) achieves this by implicit intra‐specific, density‐dependent processes that increase the population growth rate of species that have become locally rare. This would give robust maintenance of diversity, but there is no evidence for density dependence of this type in the deep sea, and no plausible mechanisms by which it could occur. Alternative models require either spatial heterogeneity on a scale much larger than that envisaged by the grain‐matching hypothesis or the placing of a cap on the abundance of common species, perhaps by frequency‐dependent predation. Arbitrating between these possibilities will require assessments of the population dynamics and spatial distribution of individual species on spatial and temporal scales much greater than those usually considered in the deep sea.  相似文献   

2.
Large nematodes form an important component of deep‐sea macrofaunal assemblages, but are often considered to be part of the meiobenthos and are rarely studied. We analysed the standing stocks, diversity, and functional group and genus‐level composition of macrofaunal nematodes at lower bathyal depths (3,500 m water depth) in the Whittard Canyon system (NE Atlantic) and on the adjacent continental slope. Five replicate sample sets were obtained using a Megacorer, at four locations (three canyon branches, one slope). Sediment samples were processed on a 500‐μm mesh to provide both nematode and polychaete data from the same samples. The dominant nematode genera included Paramesacanthion, Metacylicolaimus, Cylicolaimus and Phanodermopsis. Nematode standing stocks (density and biomass) increased significantly from slope to canyon locations. Similarly, nematode dominance increased substantially (and diversity decreased) from slope to canyon locations. Nematode feeding groups and tail shape groups also appeared to exhibit common trends across study locations. Nematode genus‐level faunal composition varied significantly between slope and canyon locations. We describe and discuss the broadly similar trends detected in the matching polychaete data, noting some differences in the polychaete density and diversity responses. We suggest that the similar trends in macrofaunal nematode and polychaete ecology across our four study locations reflect responses to both changing sedimentology and food availability.  相似文献   

3.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

4.
杨梅  李新正 《海洋科学》2017,41(6):126-133
深海热液口及其生物群落自1977年发现以来,受到海洋生物学界的广泛关注。近年来伴随深海调查技术的进步,大量热液生物群落相继被发现,并在生物地理学、生态学和生物多样性方面取得了显著的进展。目前,受采样不足及分类学研究的限制,针对深海热液口的遗传多样性研究多集中于大型底栖生物。本文拟对该领域的研究成果进行简要综述,以期加深对深海热液口大型底栖生物的物种分布模式、扩散途径及群体连通性的认识,为深海热液口生物多样性的研究提供新视角。  相似文献   

5.
The use of environmental data in biogeographic studies of the deep sea is providing greater insight into the processes underlying large‐scale patterns of diversity. Recent surveys of Australia's western continental margin (~100–1100 m) provide systematic sampling of invertebrate megafauna along a gradient of 22° of latitude (13–35° S). Diversity patterns of decapod crustaceans were examined and we investigated the relative importance of environmental and spatial predictor variables on both species richness (alpha diversity) and species turnover. Distance‐based linear models (DistLM) indicated a suite of variables were important in predicting species turnover, of which temperature and oxygen were the most influential. These reflected the oceanographic features that dominate distinct depth bathomes along the slope. The numbers of species within samples were highly variable; a small but significant increase in diversity towards the tropics was evident. Replicated sampling along the margin at ~100 m and ~400 m provided an opportunity to compare latitudinal patterns of diversity at different depths. On the shallow upper slope (~400 m) temperature was disassociated from latitude and the latter proved to be the best predictor of sample species richness. The predictive power of latitude over other variables indicates that proximity to the highly diverse Indo‐West Pacific (IWP) may be important, especially considering that almost 40% of species in this study had a wide IWP distribution. In the management of Australia's marine environments, geomorphic surrogates have been emphasised when defining areas for protection. We found sea‐floor characteristics were relatively less important in predicting richness or community composition.  相似文献   

6.
A systematic assessment of Planctomycetales diversity in a South China Sea, deep‐sea sediment (1657 m) was conducted using the 16S rRNA gene analysis approach. PCR amplification of the samples from seven sediment layers (0.1, 1, 3, 5, 7, 9 and 11 m below the surface sediment) using the primer set Pla‐46‐F/1392‐R showed that the Planctomycetales existed within a limited range of sediment depths (≤ 5 m), and had a decreasing trend in diversity with increasing depth. The majority of the retrieved Pla‐46‐F/1392‐R sequences belonged to Pirellula‐related Planctomycetales, and two sequences retrieved from the 0.1‐m layer (GenBank accession numbers: DQ996944 and DQ996945 ) shared the same anammox‐related signature oligonucleotides and were closely related to commonly recognized anammox organisms. To identify new anammox‐related biomarkers, three primer sets were designed for amplifying the fragments of hydroxylamine oxidoreductase and S‐adenosylmethionine radical enzyme genes, but no related sequences were found. Our multiple 16S rRNA gene primer sets (Journal of Rapid Methods and Automation in Microbiology, 2008, in press) revealed even an higher diversity of Planctomycetales in the 0.1‐m layer of the sediment, especially at genus level. Our data profiled the distribution pattern of Planctomycetales diversity along sediment depths, and provided molecular evidence for the existence of anammox‐related bacteria in a new location, which broadens our understanding of Planctomycetales diversity in deep sea sediments.  相似文献   

7.
The Faroe-Shetland Channel, situated in the NE Atlantic, encompasses a number of different sediment types (habitats) as well as being subject to an unusual thermal regime. Our main objective was to assess variations in macrofaunal generic diversity and composition along two transects to gauge the relative influence of regional hydrography and local habitat heterogeneity. We found that generic richness and diversity on a West of Shetland (WoS) transect correlated most strongly with temperature range, whilst along a North of Shetland (NoS) transect, richness and diversity correlated negatively with sedimentary variables, notably total organic carbon. Macrofaunal composition at WoS is also strongly influenced by water temperature with specific genera ( e.g. Galathowenia positively associated with the temperature eigenvectors), whereas at NoS it is a combination of temperature, silt + clay fraction and total organic carbon that has an impact on composition ( e.g. Proclea and Pseudosphyrapus , showing a negative relationship with the temperature eigenvectors). Although the temperature regime exerts a strong control on regional ecology, local habitat heterogeneity remains a significant factor.  相似文献   

8.
Multiple hypotheses have emerged to explain the apparent paradox of high diversity of the deep‐sea benthos when the environmental conditions are often predicted to inhibit rather than promote diversity. Many fundamental facets of these paradigms remain incompletely understood despite being central to understanding how deep‐sea ecosystems, and more generally all ecosystems, function. Here, we examine nine major paradigms of deep‐sea diversity that deserve, in our opinion, a fresh research impetus. We purposely challenge many of these ideas to generate dialogue and encourage further research. Some of the axiomatic predictions of these paradigms are: (i) the deep sea is highly diverse; (ii) stable environments reduce competition; (iii) species have finely partitioned niches; (iv) biological cropping promotes diversity; (v) disturbance controls diversity; (vi) patch mosaics structure assemblages; (vii) productivity controls diversity; (viii) recovery from disturbance is slow; and (ix) the deep sea is notoriously under‐sampled. We critically examine the evidence for each of these predictions and highlight areas where knowledge gaps exist and linkages to general ecological theory should occur. We conclude each section with ideas about questions and hypotheses that may fruitfully be tackled in future projects.  相似文献   

9.
Geographical patterning of fish diversity across coral reef seascapes is driven by many interacting environmental variables operating at multiple spatial scales. Identifying suites of variables that explain spatial patterns of fish diversity is central to ecology and informs prioritization in marine conservation, particularly where protection of the highest biodiversity coral reefs is a primary goal. However, the relative importance of conventional within‐patch variables versus the spatial patterning of the surrounding seascape is still unclear in the ecology of fishes on coral reefs. A multi‐scale seascape approach derived from landscape ecology was applied to quantify and examine the explanatory roles of a wide range of variables at different spatial scales including: (i) within‐patch structural attributes from field data (5 × 1 m2 sample unit area); (ii) geometry of the seascape from sea‐floor maps (10–50 m radius seascape units); and wave exposure from a hydrodynamic model (240 m resolution) for 251 coral reef survey sites in the US Virgin Islands. Non‐parametric statistical learning techniques using single classification and regression trees (CART) and ensembles of boosted regression trees (TreeNet) were used to: (i) model interactions; and (ii) identify the most influential environmental predictors from multiple data types (diver surveys, terrain models, habitat maps) across multiple spatial scales (1–196,350 m2). Classifying the continuous response variables into a binary category and instead predicting the presence and absence of fish species richness hotspots (top 10% richness) increased the predictive performance of the models. The best CART model predicted fish richness hotspots with 80% accuracy. The statistical interaction between abundance of living scleractinian corals measured by SCUBA divers within 1 m2 quadrats and the topographical complexity of the surrounding sea‐floor terrain (150 m radius seascape unit) measured from a high‐resolution terrain model best explained geographical patterns in fish richness hotspots. The comparatively poor performance of models predicting continuous variability in fish diversity across the seascape could be a result of a decoupling of the diversity‐environment relationship owing to structural degradation leading to a widespread homogenization of coral reef structure.  相似文献   

10.
Marine cave communities have been a continued source of ecological surprises, among other things because of their close ecological and evolutionary ties with the deep sea. The discovery of cladorhizid sponges, the deepest occurring poriferan family, in shallow Mediterranean caves in the 1990s was one such surprise, leading to the generally accepted hypothesis that the whole family was carnivorous, an unprecedented feeding mode for sponges. The recent observation of the cave species Asbestopluma hypogea in the Mediterranean bathyal, confirmed the view that some shallow caves can occasionally shelter otherwise deep‐dwelling species. Here we present new distribution data of A. hypogea, from deep Mediterranean locations, and for the first time from Atlantic locations. Among the new Atlantic records, the most surprising ones are located in three different geographic areas (Ria de Arousa, Groix Island and Cherbourg) of the NW European coasts, from the Iberian Peninsula to the English Channel, where A. hypogea reaches SCUBA depths (5–50 m), while not sheltered in marine caves. The carnivorous sponge however reaches its shallowest occurrence (5 m), in a small cave at Groix Island. The ecological significance of these discoveries, particularly the very patchy distribution and peculiar dynamics, are noteworthy, and the shallow occurrence of A. hypogea, together with other deep‐water or uncommon species, constitute unique assemblages that must be considered in conservation plans.  相似文献   

11.
大型底栖动物物种组成及其群落结构能间接反映贻贝养殖区底栖生态状况。基于2021年4月和8月枸杞岛贻贝养殖区现场调查数据,开展了大型底栖动物群落结构、季节差异及主要驱动因子的系统解析。调查共鉴定大型底栖动物172种,隶属14纲40目84科,物种季节更替率为83.14%。丰度等级分布(Rank abundance)曲线表明,夏季物种更丰富,但均匀度相对较低。春、夏季大型底栖动物Shannon-Wiener多样性介于1.61~2.95之间,季节间差异显著。Simpson指数与盐度、沉积物中值粒径(D50)存在显著正相关关系;生物量与沉积物中值粒径、总有机碳(TOC)存在显著负相关关系;物种数、Chao1指数、生物量、丰富度均与TOC显著负相关。聚类分析将春季分为四个组别,夏季分为三个组别,NMDS分析表明,春季分组物种分离不显著,夏季分组物种分离显著,相似性分析(ANOSIM)印证了这种差异。应用相似百分比(SIMPER)分析表明,季节平均相异率为87.57%,分歧种为丝异须虫(Heteromastus filiformis)。CCA分析表明,溶解氧、TOC和硝酸盐是驱动贻贝养殖区大型底栖动...  相似文献   

12.
瓯江口树排沙湿地不同生境大型底栖动物群落多样性研究   总被引:1,自引:0,他引:1  
为了解瓯江口树排沙湿地不同生境大型底栖动物群落多样性,于2014年10月至2015年6月对红树林、互花米草及光滩3种生境开展大型底栖动物调查。共鉴定出大型底栖动物48种,隶属于5纲15目31科40属。大型底栖动物年平均栖息密度和生物量,红树林生境最高,互花米草生境次之,光滩生境最低。采用物种多样性指数和G-F多样性指数分析不同生境大型底栖动物群落多样性,发现红树林生境大型底栖动物的多样性高于互花米草生境和光滩生境。单因素方差分析表明:物种数、栖息密度、生物量及物种多样性季节间差异不显著,而物种数、Shannon-Wiener多样性指数与Margalef物种丰富度指数生境间差异显著。人工恢复红树林有助于提高大型底栖动物群落的多样性。  相似文献   

13.
A study was carried out across the continental shelf and slope in the Western Indian Ocean along the Kenyan margin to unravel depth‐related species diversity patterns portrayed by different nematode families. Sediment samples were collected along four bathymetric transects at 20, 50, 200, 500, 1000 and 2000 m. Three nematode families were selected for species analysis, based on their general occurrence with relatively high numbers and diversity from shelf to slope. All three families exhibited a distinctly different shelf and slope nematode species community. However, all three families also had a significant proportion of species that displayed a eurybathic distribution. Coincidentally, Microlaimidae, the least species‐rich family had the most eurybathic species (75%) compared to Comesomatidae (39%) and Chromadoridae (32%). Total number of species per depth zone along the sampled area (gamma diversity) was three to four times the average number of species (alpha) per station. The difference was more pronounced at the slope than at the shelf. The species turnover was also higher at the slope than at the shelf stations. Each of the three families had a different diversity pattern: Comesomatidae showed a peak at mid‐depth, Chromadoridae increased with depth, and Microlaimidae showed no prominent change with depth. When the three families were combined, the shelf maintained a lower diversity compared to the slope (both local and regional). There was no consistency between genus and species diversity patterns with depth, indicating that genus diversity data may not be a proxy for species diversity. At the lowest taxonomic level (species), the slope showed a higher diversity than the shelf, whereas at higher (genus) taxonomic level the diversity was comparable between the slope and the shelf. The number of species encountered increased with the number of samples analysed and did not reach asymptote, meaning that the area was still under‐sampled. This situation points to the possibility of an even higher regional diversity.  相似文献   

14.
According to graph theory, the frequency distribution of trophic interactions within a food web has deep structural implications, as it can highlight the presence of patterns associated with the web and indicate whether the properties of the web are independent of its size. A hypothesis is that ‘small‐world’ food webs are sensitive to the loss of species with the highest values. Therefore, the present work aimed to evaluate the degree to which a subtropical food web in Southern Brazil displays small‐world patterns and their resistance. As part of the assessment, we evaluated the topological redundancy values of species in the food web and then we simulated the exclusion of these species (such as sharks and sea birds), and also the exclusion of high centrality species (such as squids Loligo sp., portunid swimming crabs and the cutlassfish Trichiurus lepturus). The food web showed a ‘broad‐scale’ distribution of connections by node, and a small‐world pattern. As expected, a simplification of the network was observed after elimination of some species with high centrality. However, the food web was resistant to the loss of species with low topological redundancy, probably because these species occupy a high trophic level and do not participate in lots of routes within the food web. We highlight however, the importance of the application of multiple analyses to evaluate the importance of components in food webs, and fisheries management plans should consider both species of high centrality values and species with low topological redundancy.  相似文献   

15.
为了解象山东部海域夏季大型底栖动物群落特征及种间相互作用情况,于2012年8月(夏季)对象山东部海域30个站位进行了大型底栖动物的调查研究。共采集,鉴定大型底栖动物36种(优势种20种),隶属于7门8纲24科,节肢动物15种(41.7%)最多,脊索动物7种(19.4%)次之。聚类分析和MDS排序结果表明,象山东部海域夏季大型底栖动物可以分为4个生态类群。选取Levins生态位宽度指数和Pianka重叠指数进行生态位分析,结果表明:象山东部海域夏季大型底栖动物优势种生态位宽度变化范围为5.22—21.66,生态位宽度值最高的为东方口虾蛄(21.66),最小的为小荚蛏(5.22);Pianka重叠指数大于0.60的优势种占19.5%,多样的生境以及生物本身的适应能力差异,使该海域大型底栖动物优势种的生态位重叠值偏小,减小了种间的竞争。该海域大型底栖动物优势种夏季生态位结构的形成主要与优势种的活动能力有关。  相似文献   

16.
We examined the large-scale distribution of deep-sea harpacticoid copepods at the species level, in order to clarify the underlying processes of copepod dispersal. The study was based on samples collected from 12 regions and a total of 113 stations: 57 stations at depths between 1107 and 5655 m on abyssal plains in the South and North Atlantic, Southern Ocean, southern Indian Ocean, and the Pacific Ocean, and 56 stations above 900 m in the North Atlantic and eastern Mediterranean Sea.We chose the genus Mesocletodes Sars, 1909 as an ideal group to study the large-scale distribution of harpacticoid copepods in the deep oceans. Clear apomorphies and a comparatively large body size of about 1 mm allow rapid recognition of allied species in meiofauna samples. In addition, Mesocletodes represents more than 50% of the family Argestidae Por, 1986, one of the most abundant harpacticoid families in the deep sea.The geographical distributions of 793 adult females of Mesocletodes belonging to 61 species throughout the South and North Atlantic, Southern Ocean, southern Indian Ocean, Pacific Ocean, and eastern Mediterranean Sea indicated that most species are cosmopolitan. Neither the topography of the sea bottom nor long distances seem to prevent species from dispersing. Passive transport by bottom currents after resuspension is likely the propulsive factor for the dispersal of Harpacticoida, while plate tectonics and movement of individuals in the sediment may play relatively minor roles.  相似文献   

17.
Studies of the trophic structure in methane‐seep habitats provide insight into the ecological function of deep‐sea ecosystems. Methane seep biota on the Chilean margin likely represent a novel biogeographic province; however, little is known about the ecology of the seep fauna and particularly their trophic support. The present study, using natural abundance stable isotopes, reveals a complex trophic structure among heterotrophic consumers, with four trophic levels supported by a diversity of food sources at a methane seep area off Concepción, Chile (~36° S). Although methanotrophy, thiotrophy and phototrophy are all identified as carbon fixation mechanisms fueling the food web within this area, most of the analysed species (87.5%) incorporate carbon derived from photosynthesis and a smaller number (12%) use carbon derived from chemosynthesis. Methane‐derived carbon (MDC) incorporation was documented in 22 taxa, including sipunculids, gastropods, polychaetes and echinoderms. In addition, wide trophic niches were detected in suspension‐feeding and deposit‐feeding taxa, possibly associated with the use of organic matter in different stages of degradation (e.g. from fresh to refractory). Estimates of Bayesian standard ellipses area (SEAB) reveal different isotopic niche breadth in the predator fishes, the Patagonian toothfish Dissostichus eleginoides and the combtooth dogfish Centroscyllium nigrum, suggesting generalist versus specialist feeding behaviors, respectively. Top predators in the ecosystem were the Patagonian toothfish D. eleginoides and the dusky cat shark, Bythaelurus canescens. The blue hake Antimora rostrata also provides a trophic link between the benthic and pelagic systems, with a diet based primarily on pelagic‐derived carrion. These findings can inform accurate ecosystem models, which are critical for effective management and conservation of methane seep and adjacent deep‐sea habitats in the Southeastern Pacific.  相似文献   

18.
Bulat  J.  Long  D. 《Marine Geophysical Researches》2001,22(5-6):345-367
A large number of 3D deep seismic surveys in the Faroe-Shetland Channel gives continuous coverage over most of the region. These surveys were designed primarily to image depths in excess of 4 km, use low frequency sources and are recorded at low temporal sample rates. However, commercial 3D data can generate highly detailed images of the seabed due to the high spatial sample rate, typically 12.5 m. This is particularly true in waters below 200 m. Despite geophysical artefacts, the images reveal that there are a number of sedimentary processes at work adjacent to and within this channel. On the West Shetland Shelf, iceberg scouring and moraines reflect the impact of glaciation. On the West Shetland slope there is clear evidence for down-slope processes, such as debris flows, linear erosion channels, basal fans and (one case) slope failure. Along-slope processes are also active as indicated by the presence of sediment waves and contourite mounds. On the floor of the basin, polygonal cracking can be observed. The most spectacular feature appears to be the Judd Deeps, a system of cliffs approximately 200 m high and 40 km across. Traditionally, seabed investigation has been performed using high-resolution surveys. This study shows that deep exploration data can also provide useful images of the seafloor.  相似文献   

19.
The gastropod superfamily Lepetelloidea represents an extremely diverse lineage in terms of their utilization of different deep‐sea organic substrates that include sunken wood, leaves, whale and fish bones, egg cases of sharks and rays, annelid tubes and detrital cephalopod beaks among others. They also inhabit cold seeps and hydrothermal vents, thus presenting an interesting case for the evaluation of such organic substrates as ‘stepping stones’ into these chemosynthetically nourished environments. Here we show the first molecular phylogeny of the Pseudococculinidae, a primarily wood‐dwelling family and the most speciose in Lepetelloidea. Special emphasis is placed on the genus Caymanabyssia, for which the only subfamily Caymanabyssiinae has been established, and a new species Caymanabyssia solis is described herein and compared with previously known taxa in order to reconsider the morphological characteristics of lepetelloids on wood. Bayesian and likelihood trees reconstructed using four‐gene sequences reveal that Pseudococculinidae sensu auctt. is a polyphyletic taxon that is grouped by shared plesiomorphic conditions of characters including the radula, a digestive organ, the morphology of which is often governed strongly by diet and feeding ecology. The newly reinterpreted families Pseudococculinidae and Caymanabyssiidae represent reciprocal sister clades as a basal radiation in Lepetelloidea. Sunken wood might thus have served as an ancestral habitat from which species on other substrates and vent and seep taxa were derived.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号