首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Planetary and Space Science》2006,54(13-14):1457-1471
Observations of oxygen pickup ions by the plasma analyzer on the Pioneer Venus Orbiter (PVO) Mission arguably launched broad interest in solar wind erosion of unmagnetized planet atmospheres, and its potential evolutionary effects. Oxygen pickup ions may play key roles in the removal of the oxygen excess left behind from the photodissociation of water vapor by enabling direct escape, additional sputtering of oxygen when they impact the exobase, and escape as energetic neutrals produced in charge exchange reactions with the ambient exospheric oxygen and hydrogen. Although the PVO observations were compromised by an ∼8 keV energy limit for O+ detection, a lack of ion composition capability, and the limited sampling and data rate of the plasma analyzer which was designed for solar wind monitoring, these measurements provide our best information about the extended O+ exosphere and wake at Venus. Here we show the full picture of the spatial distribution and energies of the O+ ion observations collected by the plasma analyzer during PVO's ∼5000 orbit tour. A model of O+ test particles launched in the circum-Venus fields described by an MHD simulation of the solar wind interaction is used to help interpret the PVO observations and to anticipate the expanded view of Venus O+ escape that will be provided by the ASPERA-4 experiment on Venus Express.  相似文献   

2.
We have used the ion mass analyzer (IMA) and magnetometer (MAG) on Venus Express (VEX) to study escaping O+ during interplanetary coronal mass ejections (ICMEs). Data from 389 VEX orbits during 2006 and 2007 revealed 265 samples of high energy pick-up ion features in 197 separate orbits. Magnetometer data during the same time period showed 17 ICMEs. The interplanetary conditions associated with the ICMEs clearly accelerate the pick-up ions to higher energies at lower altitudes compared to undisturbed solar wind. However, there is no clear dependence of the pick-up ion flux on ICMEs which may be attributed to the fact that this study used data from a period of low solar activity, when ICMEs are slow and weak relative to solar maximum. Alternatively, atmospheric escape rates may not be significantly changed during ICME events.  相似文献   

3.
《Planetary and Space Science》2006,54(13-14):1336-1343
The Venus Express mission is scheduled for launch in 2005. Among many other instruments, it carries a magnetometer to investigate the Venus plasma environment. Although Venus has no intrinsic magnetic moment, magnetic field measurements are essential in studying the solar wind interaction with Venus. Our current understanding of the solar wind interaction with Venus is mainly from the long lasting Pioneer Venus Orbiter (PVO) observations. In this paper, we briefly describe the magnetic field experiment of the Venus Express mission. We compare Venus Express mission with PVO mission with respect to the solar wind interaction with Venus. Then we discuss what we will achieve with the upcoming Venus Express mission.  相似文献   

4.
For the first time since 1992 when the Pioneer Venus Orbiter (PVO) ceased to operate, there is again a plasma instrument in orbit around Venus, namely the ASPERA-4 flown on Venus Express (inserted into an elliptical polar orbit about the planet on April 11, 2006). In this paper we report on measurements made by the ion and electron sensors of ASPERA-4 during their first five months of operation and, thereby, determine the locations of both the Venus bow shock (BS) and the ion composition boundary (ICB) under solar minimum conditions. In contrast to previous studies based on PVO data, we employ a 3-parameter fit to achieve a realistic shape for the BS. We use a different technique to fit the ICB because this latter boundary cannot be represented by a conic section. Additionally we investigate the dependence of the location of the BS on solar wind ram pressure (based on ASPERA-4 solar wind data) and solar EUV flux (using a proxy from Earth).  相似文献   

5.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

6.
7.
Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name “magnetopause” to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ∼250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ∼95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar maximum conditions. These have all occurred during extreme solar conditions.  相似文献   

8.
The two major sources of collisionless shocks in the solar wind are interplanetary coronal mass ejections (ICMEs) and stream interaction regions (SIRs). Previous studies show that some SIR-associated shocks form between Venus and Earth while most form beyond 1 AU. Here we examine the high-resolution magnetometer records from Helios 1 and 2 obtained between 0.28 and 1 AU and from MESSENGER obtained between 0.3 and 0.7 AU to further refine our understanding as to where, and in what context, shocks are formed in the inner solar system. From Helios data (Helios 1 from 1974 to 1981 and Helios 2 from 1976 to 1980), we find there were only a few shocks observed inside the orbit of Venus with the closest shock to the Sun at 0.29 AU. We find that there is a strong correlation between shock occurrence and solar activity as measured by the sunspot number. Most of the shocks inside of the orbit of Venus appear to be associated with ICMEs. Even the ICME-associated shocks are quite weak inside the orbit of Venus. By comparing MESSENGER and STEREO results, from 2007 to 2009, we find that in the deep solar minimum, SIR-driven shocks began to form at about 0.4 AU and increased in number with heliocentric distance.  相似文献   

9.
A study of the dawn-dusk asymmetry of the Venus nightside ionosphere is conducted by examining the configuration of the ionospheric trans-terminator flow around Venus and also the dawn-ward displacement of the region where most of the ionospheric holes and the electron density plateau profiles are observed (dawn meaning the west in the retrograde rotation of Venus and that corresponds to the trailing side in its orbital motion). The study describes the position of the holes and the density plateau profiles which occur at neighboring locations in a region that is scanned as the trajectory of the Pioneer Venus Orbiter (PVO) sweeps through the nightside hemisphere with increasing orbit number. The holes are interpreted as crossings through plasma channels that extend downstream from the magnetic polar regions of the Venus ionosphere and the plateau profiles represent cases in which the electron density maintains nearly constant values in the upper ionosphere along the PVO trajectory. From a collection of PVO passes in which these profiles were observed it is found that they appear at neighboring positions of the ionospheric holes in a local solar time (LST) map including cases where only a density plateau profile or an ionospheric hole was detected. It is argued that the ionospheric holes and the density plateau profiles have a common origin at the magnetic polar regions where plasma channels are formed and that the density plateau profiles represent crossings through a friction layer that is adjacent to the plasma channels. It is further suggested that the dawn-dusk asymmetry in the position of both features in the nightside ionosphere results from a fluid dynamic force (Magnus force) that is produced by the combined effects of the trans-terminator flow and the rotational motion of the ionosphere that have been inferred from the PVO measurements.  相似文献   

10.
Data from the magnetometer MAG aboard the Venus Express S/C are investigated for the occurrence of cyclotron wave phenomena upstream of the Venus bow shock. For an unmagnetized planet such as Venus and Mars the neutral exosphere extends into the on-flowing solar wind and pick-up processes can play an important role in the removal of particles from the atmosphere. At Mars upstream proton cyclotron waves were observed but at Venus they were not yet detected. From the MAG data of the first 4 months in orbit we report the occurrence of proton cyclotron waves well upstream from the planet, both outside and inside of the planetary foreshock region; pick-up protons generate specific cyclotron waves already far from the bow shock. This provides direct evidence that the solar wind is removing hydrogen from the Venus exosphere. Determining the role the solar wind plays in the escape of particles from the total planetary atmosphere is an important step towards understanding the evolution of the environmental conditions on Venus. The continual observations of the Venus Express mission will allow mapping the volume of escape more accurately, and determine better the present rate of hydrogen loss.  相似文献   

11.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

12.
《Planetary and Space Science》2007,55(12):1653-1672
The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA/Venus Express mission has technical specifications well suited for many science objectives of Venus exploration. VIRTIS will both comprehensively explore a plethora of atmospheric properties and processes and map optical properties of the surface through its three channels, VIRTIS-M-vis (imaging spectrometer in the 0.3–1 μm range), VIRTIS-M-IR (imaging spectrometer in the 1–5 μm range) and VIRTIS-H (aperture high-resolution spectrometer in the 2–5 μm range). The atmospheric composition below the clouds will be repeatedly measured in the night side infrared windows over a wide range of latitudes and longitudes, thereby providing information on Venus's chemical cycles. In particular, CO, H2O, OCS and SO2 can be studied. The cloud structure will be repeatedly mapped from the brightness contrasts in the near-infrared night side windows, providing new insights into Venusian meteorology. The global circulation and local dynamics of Venus will be extensively studied from infrared and visible spectral images. The thermal structure above the clouds will be retrieved in the night side using the 4.3 μm fundamental band of CO2. The surface of Venus is detectable in the short-wave infrared windows on the night side at 1.01, 1.10 and 1.18 μm, providing constraints on surface properties and the extent of active volcanism. Many more tentative studies are also possible, such as lightning detection, the composition of volcanic emissions, and mesospheric wave propagation.  相似文献   

13.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

14.
《Icarus》1986,66(2):380-396
A series of experiments with a three dimensional general circulation model developed to simulate Earth's atmosphere is run with planetary rotation rates varying between 1 and 1/64 times Earth's rotation rate and diurnally averaged thermal forcing. Results are used to evaluate theories of Venus' atmospheric superrotation which invoke upward transport of angular momentum from the solid planet by the zonal mean (i.e., axisymmetric) circulation. The theories predict that superrotation is a common feature of slowly rotating planetary atmospheres, suggesting that superrotation should appear in the idealized slowly rotating cases of the present study. We find, however, that although dynamical mechanisms suggested for axisymmetric forcing of superrotation appear in model spinups from rest, the steady-state circulations include only weak globally averaged superrotation, consistent with previously reported results from lower resolution models. It appears that during spinup the thermally driven equator-to-pole circulation rapidly generates zonal-mean winds near the planetary surface which preclude vertical angular momentum transport and thus suppress further development of the superrotation. If this is the case, then the diurnally varying component of solar heating, such as atmospheric tides or the “moving flame”, must be included to explain Venus' strong atmospheric superrotation.  相似文献   

15.
We present comprehensive surveys of 203 stream interaction regions (SIRs) and 124 interplanetary CMEs (ICMEs) during 1979 – 1988 using Pioneer Venus Orbiter (PVO) in situ solar-wind observations at 0.72 AU and examine the solar-cycle variations of the occurrence rate, shock association rate, duration, width, maximum total perpendicular pressure (P t), maximum dynamic pressure, maximum magnetic field intensity, and maximum velocity change of these two large-scale solar-wind structures. The medians, averages, and histogram distributions of these parameters are also reported. Furthermore, we sort ICMEs into three groups based on the temporal profiles of P t, and we investigate the variations of the fractional occurrence rate of three groups of ICMEs with solar activity. We find that the fractional occurrence rate of magnetic-cloud-like ICMEs declined with solar activity, consistent with our former 1-AU results. This study at 0.72 AU provides a point of comparison in the inner heliosphere for examining the radial evolution of SIRs and ICMEs. The width of SIRs and ICMEs increases by 0.04 and 0.1 AU, respectively, and the maximum P t decreases to about 1/3 from Venus to Earth orbit. In addition, our work establishes the statistical properties of the solar-wind conditions at 0.72 AU that control the solar-wind interaction with Venus and its atmosphere loss by related processes. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

16.
Doppler tracking data from the Pioneer Venus Orbiter (PVO) have been used to estimate the anomalous gravity field in the region of Venus west of Beta Regio. The analysis invokes a Kalman filter-smoother to solve the nonlinear spacecraft state estimation problem and a linear Bayesian estimator to perform the geophysical inversion. The topographic map for this region, derived from the PVO radar, has been filtered to have the same distortions and degree of smoothing as the gravity map. The undulations of the gravity are about 0.2 times as large as expected from the topography on the assumption that the latter is uncompensated. A comparison of the gravity and topography by means of the spectral admittance is consistent with Airy compensation at a depth of 50 km if the surface material has a density of 2.6 g/cm3. However, this is not a unique interpretation.  相似文献   

17.
The results obtained by two extreme ultra violet (e.u.v.) spectrophotometers flown near Venus on VENERA 11 and VENERA 12 in December 1978 are presented. Detectors were placed at discrete wavelength positions to measure e.u.v. emissions from the upper atmosphere of Venus while the spacecraft were drifting on their fly-by orbits. The emissions of HI 121.6 nm (Ly-α), HeI 58.4 nm, and OI 130.4 nm were measured with unprecedented sensitivity and spatial resolution. An OI signal of 500 Rayleigh (R) measured outside the disc suggested the existence of a large bulge of oxygen atoms. The e.u.v. emissions of two ionic species. OII 83.4 nm and HeII 30.4 nm, were measured for the first time in the atmosphere of Venus. The zero order detector of VENERA 12 indicated the presence of a very intense e.u.v. emission (28 kR) lying between the monitored wavelengths. This emission, which was only 3 kR for VENERA 11, is likely to be associated with the solar wind-ionosphere interaction.An attempt to measure ArI and NeI resonance emissions failed.The Lyman alpha (Ly-α) interplanetary background was 4 to 5 times larger than expected, suggestive of a very intense solar flux or an increase of the interplanetary density. The distribution of hydrogen indicates two populations with temperatures of 400 and 700 K.  相似文献   

18.
《Planetary and Space Science》2007,55(12):1673-1700
Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft.A UV spectrometer (118–320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, γ and δ bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (∼60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere.The SPICAV VIS-IR sensor (0.7–1.7 μm, resolution 0.5–1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols.The SOIR spectrometer is a new solar occultation IR spectrometer in the range λ=2.2–4.3 μm, with a spectral resolution λλ>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.  相似文献   

19.
Solar Occultation in the InfraRed (SOIR) is one of three spectrometers of the SPICAV/SOIR instrument suite (Bertaux et al., 2007b) on board the Venus Express orbiter (VEX). VEX has been in orbit around Venus since April 2006 and to date SOIR has carried out over 674 measurements. Pre-launch and in-orbit performance analyses allow us to predict what SOIR would be capable of at Mars. SOIR spectra through the Martian atmosphere have been simulated with ASIMUT, a line-by-line (LBL) radiative transfer code also used for the retrieval of vertical profiles of atmospheric constituents of Venus (Vandaele et al., 2008, Bertaux et al., 2007a). The code takes into account the temperature and pressure vertical profiles as well as those of the atmospheric species, but also the instrument function and the overlapping of the diffraction orders of the echelle grating. We will show these spectra and the detection limits of species that could be studied using a SOIR spectrometer making solar occultation or nadir measurements in Mars orbit.  相似文献   

20.
Comparative study of ion cyclotron waves at Mars, Venus and Earth   总被引:1,自引:0,他引:1  
Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion’s gyrofrequency. At Mars and Venus and in the Earth’s polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth’s polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号