共查询到20条相似文献,搜索用时 15 毫秒
1.
Eddy-correlation measurements of the vertical fluxes of ozone, carbon dioxide, fine particles with diameter near 0.1 m, and particulate sulfur, as well as of momentum, heat and water vapor, have been taken above a tall leafless deciduous forest in wintertime. During the experimental period of one week, ozone deposition velocities varied from about 0.1 cm s–1 at night to more than 0.4 cm s-1 during the daytime, with the largest variations associated primarily with changes in solar irradiation. Most of the ozone removal took place in the upper canopy. Carbon dioxide fluxes were directed upward due to respiration and exhibited a strong dependence on air temperature and solar heating. The fluxes were approximately zero at air temperatures less than 5 °C and approached 0.8 mg m–2 s–1 when temperatures exceeded 15 °C during the daytime. Fine-particle deposition rates were large at times, with deposition velocities near 0.8 cm s–1 when turbulence levels were high, but fluxes directed upward were found above the canopy when the surface beneath was covered with snow. Diffusional processes seemed to dominate fine-particle transfer across quasilaminar layers and subsequent deposition to the upper canopy. Deposition velocities for particulate sulfur were highly variable and averaged to a value small in magnitude as compared to similar measurements taken previously over a pine forest in summer. 相似文献
2.
Large-eddy simulation of turbulent flow above and within a forest 总被引:10,自引:22,他引:10
A large-eddy simulation has been performed of an atmospheric surface layer in which the lower third of the domain is occupied by a drag layer and heat sources to represent a forest. Subgridscale processes are treated using second-order closure techniques. Lateral boundaries are periodic, while the upper boundary is a frictionless fixed lid. Mean vertical profiles of wind velocity derived from the output are realistic in their shape and response to forest density. Similarly, vertical profiles of Reynolds stress, turbulent kinetic energy and velocity skewness match observations, at least in a qualitative sense. The limited vertical extent of the domain and the artificial upper boundary, however, cause some departures from measured turbulence profiles in real forests. Instantaneous turbulent velocity and scalar fields are presented which show some of the features obtained by tower instrumentation in the field and in wind tunnels, such as the vertical coherence of vertical velocity and the slope of structures revealed by temperature patterns. 相似文献
3.
4.
Observation of organized structure in turbulent flow within and above a forest canopy 总被引:12,自引:2,他引:12
Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront. 相似文献
5.
M. Y. Leclerc K. C. Beissner R. H. Shaw G. Den Hartog H. H. Neumann 《Boundary-Layer Meteorology》1991,55(1-2):109-123
The influence of atmospheric stability on the behaviour of the third moment of flow velocities observed inside a deciduous forest canopy is examined. Results suggest that buoyancy plays a dominant role in dictating the magnitude of gusts observed inside tall vegetation. Furthermore, an examination of the turbulence recorded throughout leaf fall inside the same forest indicates that larger velocity skewnesses are observed inside a canopy in full leaf than inside a sparse canopy. The behaviour of the measured terms in the non-dimensionalized rate equation of the third moment of canopy flow velocities is also examined. Turbulent diffusion and turbulence gradient interaction terms are largest in stable conditions in the upper canopy layer while these are most important in unstable conditions in the lower canopy layer. In all stability regimes, the turbulent diffusion term is the main source of skewness. The turbulence gradient interaction term, the residual and buoyant production terms all contribute to destroy skewness in stable conditions. 相似文献
6.
The processes influencing turbulence in a deciduous forest and the relevant length and time scales are investigated with spectral and cross-correlation analysis. Wind velocity power spectra were computed from three-dimensional wind velocity measurements made at six levels inside the plant canopy and at one level above the canopy. Velocity spectra measured within the plant canopy differ from those measured in the surface boundary layer. Noted features associated with the within-canopy turbulence spectra are: (a) power spectra measured in the canopy crown peak at higher wavenumbers than do those measured in the subcanopy trunkspace and above the canopy; (b) peak spectral values collapse to a relatively universal value when scaled according to a non-dimensional frequency comprised of the product of the natural frequency and the Eulerian time scale for vertical velocity; (c) at wavenumbers exceeding the spectral peak, the slopes of the power spectra are more negative than those observed in the surface boundary layer; (d) Eulerian length scales decrease with depth into the canopy crown, then increase with further depth into the canopy; (e) turbulent events below crown closure are more correlated with turbulent events above the canopy than are those occurring in the canopy crown; and (f) Taylor's frozen eddy hypothesis is not valid in a plant canopy. Interactions between plant elements and the mean wind and turbulence alter the processes that produce, transport and remove turbulent kinetic energy and account for the noted observations. 相似文献
7.
Turbulent transport processes for momentum and scalar quantities are examined by a joint probability distribution analysis using data observed within and above a deciduous forest. Characteristics of transport processes in the frequency domain were also analyzed using Tukey's procedure. The results confirm that sweep phenomena prevail within and at the top of a tall plant canopy and that downdrafts are more effective for vertical transport of momentum and scalar quantities. On the other hand, updrafts become more efficient for vertical transport in the daytime at levels about twice treetop height. The results show that within the forest, the sweep phenomenon prevails over a wide frequency range, while above the forest, prevalence of the ejection phenomenon is limited to low frequencies. It is again noted that the plant canopy plays an important role in the sweep-ejection cycle as well as in turbulent transport processes. 相似文献
8.
9.
Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy 总被引:3,自引:2,他引:3
The output of a large-eddy simulation was used to study the terms ofthe turbulent kinetic energy (TKE) budget for the air layers above andwithin a forest. The computation created a three-dimensional,time-dependent simulation of the airflow, in which the lowest third ofthe domain was occupied by drag elements and heat sources to representthe forest. Shear production was a principal source of TKE in theupper canopy, diminishing gradually above tree-top height and moresharply with depth in the canopy. The transfer of energy to subgridscales (dissipation) was the main sink in the upper part of the domainbut diminished rapidly with depth in the canopy. Removal ofresolved-scale TKE due to canopy drag was extremely important,occurring primarily in the upper half of the forest where the foliagedensity was large. Turbulent transport showed a loss at the canopytop and a gain within the canopy. These general features have beenfound elsewhere but uncertainty remains concerning the effects ofpressure transport. In the present work, pressure was calculateddirectly, allowing us to compute the pressure diffusion term. Wellabove the canopy, pressure transport was smaller than, and opposite insign to, the turbulent transport term. Near the canopy top andbelow, pressure transport acted in concert with turbulent transport toexport TKE from the region immediately above and within the uppercrown, and to provide turbulent energy for the lower parts of theforest. In combination, the transport terms accounted for over half ofthe TKE loss near the canopy top, and in the lowest two-thirds of thecanopy the transport terms were the dominant source terms in thebudget. Moreover, the pressure transport was the largest source ofturbulent kinetic energy in the lowest levels of the canopy, beingparticularly strong under convective conditions. These resultsindicate that pressure transport is important in the plant canopyturbulent kinetic energy budget, especially in the lowest portion ofthe stand, where it acts as the major driving force for turbulentmotions. 相似文献
10.
A review is presented of some Russian-language papers published as early as 1952–1954 that are unknown to most English-speaking readers. In these papers the influence of an abrupt change in the surface friction velocityv
*, surface roughnessz
0 and surface temperature or heat flux on the wind velocity profile and vertical motions has been investigated analytically and numerically. Most of the theories are based on the exchange-coefficient approximation for momentum and heat. In terms of this approximation, further generalization and development of the problem is discussed.In an appendix, the Shwetz method for approximate solution of the boundary-layer partial differential equations is briefly described, using as an example an equation for which an exact solution is also possible. 相似文献
11.
C. E. Coulman 《Boundary-Layer Meteorology》1980,19(4):403-420
Observations made over land and ocean show that the structure of convection in the lowest one-third of a well-mixed layer may be studied in terms of a density-related variable (e.g.,
v
) without regard to whether structural elements are ascending or descending. This no longer holds in the remainder of the layer. Further, the temperature-humidity correlation is generally not the same for ascending and descending elements in any part of the layer. The consequences for short-path optical propagation are considered. 相似文献
12.
Alan G. Barr K. M. King T. J. Gillespie G. Den Hartog H. H. Neumann 《Boundary-Layer Meteorology》1994,71(1-2):21-41
Sensible and latent heat flux densities (H and E) were measured above a mature, 18 m deciduous forest during July and August, 1988, using the Bowen ratio-energy balance (BREB) and eddy correlation (EC) methods. EC estimates ofH and E underestimated day-time surface available energy by 11%. EC also partitioned available energy differently than BREB. for/L<0.0, EC favouredH and BREB favoured E.
Practical and theoretical limitations of the BREB and EC methods above forests are discussed. The most plausible causes for the failure of EC to close the surface energy balance are a low frequency loss of flux and the failure of a single point measurement to account for the spatial dispersive flux. The most plausible causes of the EC-BREB energy partitioning anomaly are the invalidity of the BREB similarity assumption and the violation of flux-gradient diffusion assumptions in the near-field diffusion region. 相似文献
13.
Y. S. Wang D. R. Miller D. E. Anderson R. M. Cionco J. D. Lin 《Boundary-Layer Meteorology》1992,59(1-2):125-139
Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions. 相似文献
14.
Potential temperature, specific humidity and wind profiles measured by radiosondes under unstable but windy conditions during FIFE in northeastern Kansas were analyzed within the framework of Monin-Obukhov similarity. Around 86% of these profiles were found to have a height range over which the similarity, formulated in terms of the Businger-Dyer functions, is valid and for which the resulting surface fluxes are in good agreement with independent measurements at ground stations. When scaled with the surface roughness z
0
= 1.05 m and the displacement height d
0
= 26.9 m, for the potential temperature this height range was 45 (±31) (z – d
0
)/z
0
104 (±54) and the comparison of the profile-derived surface fluxes with the independent measurements gave a correlation coefficient of r = 0.96. For the specific humidity these values are 42 (±29) (z – d
0
)/z
0
96 (±38) and r = 0.94. In terms of the height of the bottom of the inversion H
i
, in the morning hours the upper limit of (z – d
0
) in the Monin-Obukhov layer is approximately 0.3H
i
, whereas for a fully developed ABL it is closer to 0.1H
i
. Probably, as a result of the short sampling times and perhaps also of the small gradients under the windy conditions, the exact height range of validity was difficult to establish from a mere inspection of these profiles. 相似文献
15.
为改进GRAPES全球三维变分同化系统(GRAPES-3DVar)的湿度分析,借鉴Hólm等(2002)的思想,在背景误差协方差结构中引入湿度与温度的统计平衡约束关系。通过扣除湿度变化中与温度有关的平衡部分获取非平衡拟相对湿度,并引入非线性对称变换对其做标准化处理,将处理后的变量作为新的湿度控制变量。统计结果表明,温湿统计平衡约束主要出现在中高纬度对流层中层相对湿度大于80%的区域,与大尺度抬升凝结加热有关;新的湿度控制变量能满足无偏、高斯分布特征。单点理想观测试验结果表明,新的湿度分析具备了流依赖特征,并能有效地抑制负水汽与超饱和水汽的出现。同化循环与预报试验结果表明,新方案给出的湿度分析的偏差和均方根误差均有所减小。而针对降水预报的检验结果表明,引入新方案后的0.1-10 mm降水预报,在ETS评分没有显著降低的情况下,BIAS评分更靠近1,降水空报有所减缓。然而60-84 h的25 mm以上的降水漏报现象更为明显,表明湿度同化分析方案还有改进空间。通过引入温湿统计平衡约束关系,完善了GRAPES-3DVar分析框架,为全球湿度分析的持续改进奠定了坚实基础。 相似文献
16.
Temperature fluctuations in the stable air layer before and after sunset were measured at 4 heights within and above a wheat field. Large positive temperature fluctuations were frequently observed within the plant canopy. The standard deviations, skewness factors and flatness factors of temperature fluctuations within the canopy showed peculiar time variations, having remarkable positive skewness factors. The occurrence of large positive temperature fluctuations was probably related to the difference of temperature gradients below and above the observation height, i.e., these fluctuations frequently occurred when the temperature gradient above the observation height was greater than that below the observation height. Furthermore, the vertical mixing associated with the penetration of downdrafts from the air layer above the canopy was requisite for the occurrence of the phenomenon. 相似文献
17.
The mean and short-term fluctuations of carbon dioxide concentration, air temperature, and horizontal wind speed were measured simultaneously within and above a maize crop. Although fluctuations were large at each of the 10 measurement heights, the largest were at the 180-cm level, the densest part of the crop. These short-term fluctuations indicated the broad range of environmental conditions to which plants are exposed (and which plants create or modify) in the field. The statistics of the distributions of these meteorological elements are discussed and the deviations from steady-state conditions are examined by determining linear trends. Finally, variance spectra showed the periodicity of the variations of these meteorological elements.Contribution from the Agricultural Research Service, US Department of Agriculture in cooperation with N.Y. State College of Agriculture, Cornell University, Ithaca, No. 1205. CBRI Contribution No. 966. 相似文献
18.
R. G. Bill Jr. L. H. Allen Jr. T. Audunson B. Gebhart E. Lemon 《Boundary-Layer Meteorology》1976,10(2):199-220
Hot-wire anemometers were used to measure air temperature and the three velocity components of the wind within and above a maize canopy. From digitized anemometer outputs, correlation coefficients for vertical heat flux and turbulent momentum transfer were calculated. A comparison of these coefficients with profiles of mean wind speed and mean temperature indicates that the main features of the turbulence may be explained in terms of the usual mixing-length theory. Instantaneous records of heat and momentum flux, however, indicate the existence of other competing turbulent mechanisms due to the unsteady, non-equilibrium nature of the turbulent flow. Regimes of flow dominated by mechanical and/or thermal mixing are indicated. Spectral results show that high shear and turbulent intensity levels as well as the presence of the maize leaves and stalks as vortex-shedding surfaces complicate the energy transfer mechanism. An energy balance between radiation and convection reveals that the energy budget is primarily a balance between solar radiation and the flux of latent heat.Contribution of the Sibley School of Mechanical and Aerospace Engineering, Cornell University, in cooperation with the Agricultural Research Service, U.S. Department of Agriculture, Ithaca, N.Y., U.S.A. and the Cornell University Agricultural Experiment Station. Department of Agronomy Series No. 1116.Sibley School of Mechanical and Aerospace Engineering, Cornell University; U.S. Department of Agriculture, Gainesville, Florida Section for Estuary and Fjord Studies, River and Harbour Laboratory, Technical University of Norway, Trondheim, Norway; State Univ. of New York at Buffalo; and U.S. Department of Agriculture and Cornell University; respectively. 相似文献
19.
W. Kohsiek 《Boundary-Layer Meteorology》1984,29(3):211-224
Observations of the temperature-humidity cospectrum and correlation spectrum were made with a cold platinum wire and a Ly- hygrometer at 3.7 and 10 m above vegetated surfaces during unstable atmospheric conditions. It was found theoretically that a separation between the temperature and humidity sensors causes a drop-off of the correlation spectrum at wavenumbers > 0.3 –1. The observed drop-off follows the theoretical one reasonably well. Measurements made with the temperature sensor placed in the center of the Ly- gap reveal a % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8NKby% kaaa!37B5!\[f\]–5/3 dependence of the temperature-humidity cospectrum in the inertial subrange up to frequencies of 20 Hz. The drop-off at higher frequenties is thought to be caused by limitations inherent to the Ly- humidiometer. 相似文献
20.
Turbulence measurements performed at high frequencies yield data revealing intermittent and multi-scale processes. Analysing time series of turbulent variables thus requires extensive numerical treatment capable, for instance, of performing pattern recognition. This is particularly important in the case of the atmospheric surface layer and specifically in the vicinity of plant canopies, where largescale coherent motions play a major role in the dynamics of turbulent transport processes. In this paper, we examine the ability of the recently developedwavelet transform to extract information on turbulence structure from time series of wind velocities and scalars. It is introduced as a local transform performing a time-frequency representation of a given signal by a specific wavelet function; unlike the Fourier transform, it is well adapted to studying non-stationary signals. After the principles and the most relevant mathematical properties of wavelet functions and transform are given, we present various applications of relevance for our purpose: determination of time-scales, data reconstruction and filtering, and jump detection. Several wavelet functions are inter-compared, using simple artificially generated data presenting large-scale features similar to those observed over plant canopies. Their respective behaviour in the time-frequency domain leads us to assign a specific range of applications for each. 相似文献