首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Notes de lecture     
Abstract

3D stratigraphic geometries of the intracratonic Meso- Cenozoic Paris Basin were obtained by sequence stratigraphic correlations of around 1 100 wells (well-logs). The basin records the major tectonic events of the western part of the Eurasian Plate, i.e. opening and closure of the Tethys and opening of the Atlantic. From earlier Triassic to Late Jurassic, the Paris Basin was a broad subsiding area in an extensional framework, with a larger size than the present-day basin. During the Aalenian time, the subsidence pattern changes drastically (early stage of the central Atlantic opening). Further steps of the opening of the Ligurian Tethys (base Het- tangian, late Pliensbachian;...) and its evolution into an oceanic domain (passive margin, Callovian) are equally recorded in the tectono-sedimentary history. The Lower Cretaceous was characterized by NE-SW compressive medium wavelength unconformities (late Cimmerian-Jurassic/Cretaceous boundary and intra- Berriasian and late Aptian unconformities) coeval with opening of the Bay of Biscay. These unconformities are contemporaneous with a major decrease of the subsidence rate. After an extensional period of subsidence (Albian to Turanian), NE-SW compression started in late Turanian time with major folding during the Late Cretaceous. The Tertiary was a period of very low subsidence in a com- pressional framework. The second folding stage occurred from the Lutetian to the Lower Oligocene (N-S compression) partly coeval with the E-W extension of the Oligocene rifts. Further compression occurred in the early Burdigalian and the Late Miocene in response to NE-SW shortening. Overall uplift occurred, with erosion, around the Lower/Middle Pleistocene boundary. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

2.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.  相似文献   

4.
The tectonic effects of the Thulean mantle plume on the opening of the North Atlantic Ocean is still poorly understood. An analysis of the brittle deformation affecting the Late Cretaceous Chalk and Lower Tertiary igneous formations cropping out in Ulster (Northern Ireland), part of the Thulean Province, leads to the recognition of two tectonic phases. Each of these phases is characterized by different stress regimes with similar trends of the horizontal maximum principal stress σH. The first phase, syn-magmatic and dominated by NE–SW to ENE–WSW extension, occurred during the Palaeocene. It is followed by a second post-magmatic phase, characterized initially by a probably Eocene strike-slip to compressional palaeo-stress regime with σ1 (=σH) trending NE–SW to NNE–SSW associated with the partial reactivation (as reverse faults) of normal faults formed during the first phase NE–SW extension. This episode is postdated by an Oligocene extension, with σH (=σ2) still striking NNE–SSW/NE–SW, which reactivated Eocene strike-slip faults as nearly vertical dip-slip normal faults. This Palaeogene tectonic evolution is consistent with the tectonic evolution of similar age in western Scotland and in the Faeroe Islands. In particular, the post-magmatic NE–SW compression is here related to the ‘Faeroe compressive event’, which is related to the earliest stages of drift of the Greenland plate.  相似文献   

5.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

6.
Small‐mammalian faunas enable the discrimination and correlation of uppermost Lower Miocene lacustrine sedimentary units in central western Anatolia. On the basis of sequential stratigraphic relationships, early Early Miocene and latest Early Miocene relative ages are suggested for the older lacustrine mass‐flow deposits and younger paper shale units, respectively, which are devoid of age‐diagnostic fossils. In central western Anatolia, the sequential differences between the uppermost Lower Miocene successions delineate a deformation zone of NE–SW‐trending fault blocks separated by vertical faults. This deformation zone, inherited from Late Oligocene tectonics, underwent an early Early Miocene sinistral transtension leading to pull‐aparts that were emplaced by granitoids. Limited extension caused the late Early Miocene repetitive up‐ and down‐wards motions of the fault blocks, with variable magnitudes. This led to contrasting subsidence histories in the relevant basinal system. During the latest Early Miocene, fault blocks coalesced into a regional body characterized by uniform slow subsidence and non‐extensional deformation facies. The general trend of the above tectonic events can be explained by lateral slab segmentation and progressive asthenospheric wedging, in response to NE‐directed and decelerated palaeosubduction in the Aegean. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
长江中下游及其邻区中生代构造体制转换   总被引:16,自引:13,他引:3  
长江中下游及其邻区中生代以来经历了特提斯、古亚洲、太平洋三大构造体制复杂的转换过程,地壳活动频繁,不同期次、不同方向、不同性质的构造叠加强烈,并控制了区内的岩浆活动和热液成矿。(1)印支晚期特提斯构造体制作用,具有俯冲带性质的襄樊-广济断裂带和先后具有左旋平移转换断层性质的郯庐断裂带产生。(2)燕山早期特提斯构造体制向古亚洲构造体制和太平洋构造体制转换,其一,晚侏罗世古亚洲构造体制近南北向挤压,桐柏-大别造山带形成共轭剪切带。其二,晚侏罗世与早白垩世之交古太平洋板块活动,NE向展布的华南板内构造形成。(3)燕山晚期脉动式伸展构造产生大规模火山喷发和岩浆活动;晚白垩世-始新世长江中下游地区盆-岭构造形成。(4)喜马拉雅早期太平洋构造体制下近E-W向挤压作用,近S-N向展布的红色盆地发生反转,呈NE-SW向线状展布。  相似文献   

8.
The Sanandaj–Sirjan Zone contains the metamorphic core of the Zagros continental collision zone in western Iran. The zone has been subdivided into the following from southwest to northeast: an outer belt of imbricate thrust slices (radiolarite, Bisotun, ophiolite and marginal sub-zones, which consist of Mesozoic deep-marine sediments, shallow-marine carbonates, oceanic crust and volcanic arc, respectively) and an inner complexly deformed sub-zone (late Palaeozoic–Mesozoic passive margin succession). Rifting and sea-floor spreading of Tethys occurred in the Permian to Triassic but in the Sanandaj–Sirjan Zone extension-related successions are mainly of Late Triassic age. Subduction of Tethyan sea floor in the Late Jurassic to Cretaceous produced deformation, metamorphism and unconformities in the marginal and complexly deformed sub-zones. Deformation climaxed in the Late Cretaceous when a major southwest-vergent fold belt formed associated with greenschist facies metamorphism and post-dated by abundant Palaeogene granitic plutons. In the southwest of the zone a Late Cretaceous island arc—passive margin collision occurred with ophiolite emplacement onto the northern Arabian margin similar to that in Oman. Final closure of Tethys was not completed until the Miocene when Central Iran collided with the northeast Arabian margin.  相似文献   

9.
以最新的地质 地球物理资料和北黄海盆地构造几何学特征为基础,采用盆地反演模拟与宏观分析相结合的方法,系统解析了北黄海盆地的构造运动学特征。研究表明,北黄海盆地在中、新生代时期经历了水平伸展、水平挤压、相对平移(走滑)以及垂直差异升降等几种运动型式,其中,水平伸展运动和垂直差异升降运动是北黄海盆地构造运动及形成演化的主体。水平伸展运动可以划分为J3-K1、E2和E3三个主要“伸展事件”,并控制着盆地的成盆演化,其南北向伸展强度均东强西弱,东西向最大伸展强度自中生代到新生代由东向西迁移。水平挤压运动主要有晚白垩世和渐新世末-中新世初期两期。相对平移(走滑)运动伴随水平伸展运动和水平挤压运动发生,使多数NNE向、NW向断裂具有相对压扭或张扭平移(走滑)性质,其中尤以NNE向断裂更为明显。垂直差异升降运动具有“幕式”渐进之特点,晚侏罗世、早白垩世、始新世、渐新世以及中新世中晚期以来为沉降期,其中尤以始新世的沉降速率最大,晚白垩世、古新世、中新世早期为抬升剥蚀期;盆地的中、新生代沉降作用具有明显的自东向西迁移规律:东部坳陷以中生代沉降作用最为显著,中部坳陷主沉降期为始新世,而西部坳陷的快速沉降主要发生在始新世,并一直持续到渐新世。  相似文献   

10.
The identification of three independent rifting events in the Colorado basin area highlights the complexity of its Mesozoic rifting history, which ended in the Early Cretaceous with the opening of the South Atlantic Ocean. A first rifting event, associated with the extensional reactivation of previously compressive thrusts of the Ventania‐Cape fold belt, is transected by faults forming the main depocenters of the Colorado and possibly the adjacent Salado basin. The second and main rifting stage is correlated with the Early Jurassic Karoo rifting. In the Early Cretaceous, WNW–ESE extension produced NNE‐trending landward‐dipping faults, concentrated in the outer 100–200 km of the continental crust domain, possibly coeval with SDR emplacement. This is the first identification of three superimposed rifting settings in the southern South Atlantic realm and is key to understanding the complex Mesozoic breakup history of SW Gondwana.  相似文献   

11.
The Gorgon Platform is located on the southeastern edge of the Exmouth Plateau in the North Carnarvon Basin, North West Shelf, Australia. A structural analysis using three-dimensional (3D) seismic data has revealed four major sets of extensional faults, namely, (1) the Exmouth Plateau extensional fault system, (2) the basin bounding fault system (Exmouth Plateau–Gorgon Platform Boundary Fault), (3) an intra-rift fault system in the graben between the Exmouth Plateau and the Gorgon Platform and (4) an intra-rift fault system within the graben between the Exmouth Plateau and the Exmouth Sub-basin. Fault throw-length analyses imply that the initial fault segments, which formed the Exmouth Plateau–Gorgon Platform Boundary Fault (EG Boundary Fault), were subsequently connected vertically and laterally by both soft- and hard-linked structures. These major extensional fault systems were controlled by three different extensional events during the Early and Middle Jurassic, Late Jurassic and Early Cretaceous, and illustrate the strong role of structural inheritance in determining fault orientation and linkage. The Lower and Middle Jurassic and Upper Jurassic to Lower Cretaceous syn-kinematic sequences are separated by unconformities.  相似文献   

12.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

13.
Studies of multichannel seismic reflection profiles, calibrated with borehole data, have been carried out in the Tunisian shelf surrounding the islands of Lampione and Lampedusa, in order to define the Mesozoic-Cenozoic stratigraphie and structural evolution of this sector of the Pelagian foreland. The stratigraphy and subsidence history show a subsiding Upper Jurassic carbonate platform buried, by syn- and post-rift neritic to deep marine siliciclastics, marls and limestones of Neocomian-early Eocene age. Thick Middle-Upper Eocene shallow-water carbonates (Halk el Menzel Fm.), lie unconformably over the deep-water sediments and exhibit progradational geometries.
Messinian evaporites are confined to the deepest parts of the Neogene basins and Plio-Quaternary sediments are widespread over the area. Several unconformities affect the stratigraphic column and have been interpreted as related to compressive events during Late Cretaceous-early Tertiary times. These compressive events produced uplift, folding and reverse faulting, trending about NW-SE and partly reactivating Lower Cretaceous extensional structures. The uppermost regional unconformity indicates widespread emergence and erosion during Oligocene and Miocene tintes and was probably related to a younger compressional phase. A strong Upper Miocene-Quaternary extension event also affected the area, characterized by WNW-ESE trending normal faults, parallel to faults flanking the main grabens of the Sicily Strait rift zone. Since the Messinian, the structural evolution of the area has been controlled by rift-related processes which triggered crustal extension in the Pelagian foreland.  相似文献   

14.
The southern Central Andes of Argentina and Chile (27–40°S) are the product of deformation, arc magmatism, and basin evolution above a long-lived subduction system. With sufficient timing and provenance constraints, Andean stratigraphic and structural records enable delineation of Mesozoic-Cenozoic variations in subsidence and tectonic regime. For the La Ramada Basin in the High Andes at ∼31–33°S, new assessments of provenance and depositional age provided by detrital zircon U-Pb geochronology help resolve deformational patterns and subsidence mechanisms over the past ∼200 Myr. Marine and nonmarine clastic deposits recorded the unroofing of basin margins and sediment contributions from the Andean magmatic arc during Late Triassic to Early Cretaceous extension, thermal subsidence, and possible slab rollback. Subsequent sediment delivery from the Coastal Cordillera corresponded with initial flexural accommodation in the La Ramada Basin during Andean shortening of late Early Cretaceous to Late Cretaceous age. The architecture of the foreland basin was influenced by the distribution of precursor extensional depocenters, suggesting that inherited basin geometries provided important controls on later flexural subsidence and basin evolution. Following latest Cretaceous to early Paleogene tectonic quiescence and a depositional hiatus, newly dated deposits in the western La Ramada Basin provide evidence for a late Paleogene episode of intra-arc and proximal retroarc extension (development of the Abanico Basin, principally in Chile, at ∼28–44°S). Inversion of this late Paleogene extensional basin system during Neogene compression indicates the southern Central Andes were produced by at least two punctuated episodes of shortening and uplift of Late Cretaceous and Neogene age.  相似文献   

15.
The common elements and differences of the neighboring Austral (Magallanes), Malvinas and South Malvinas (South Falkland) sedimentary basins are described and analyzed. The tectonic history of these basins involves Triassic to Jurassic crustal stretching, an ensuing Early Cretaceous thermal subsidence in the retroarc, followed by a Late Cretaceous–Paleogene compressional phase, and a Neogene to present-day deactivation of the fold–thrust belt dominated by wrench deformation. A concomitant Late Cretaceous onset of the foreland phase in the three basins and an integrated history during the Late Cretaceous–Cenozoic are proposed. The main lower Paleocene–lower Eocene initial foredeep depocenters were bounding the basement domain and are now deformed into the thin-skinned fold–thrust belts. A few extensional depocenters developed in the Austral and Malvinas basins during late Paleocene–early Eocene times due to a temporary extensional regime resulting from an acceleration in the separation rate between South America and Antarctica preceding the initial opening of the Drake Passage. These extensional depocenters were superimposed to the previous distal foredeep depocenter, postdating the initiation of the foredeep phase and the onset of compressional deformation. Another pervasive set of normal faults of Paleocene to Recent age that can be recognized throughout the basins are interpreted to be a consequence of flexural bending of the lithosphere, in agreement with a previous study from South Malvinas basin. Contractional deformation was replaced by transpressive kinematics during the Oligocene due to a major tectonic plate reorganization. Presently, while the South Malvinas basin is dominated by the transpressive uplift of its active margin with minor sediment supply, the westward basins undergo localized development of pull-apart depocenters and transpressional uplift of previous structures. The effective elastic thickness of the lithosphere for different sections of each basin is calculated using a dynamic finite element numerical model that simulates the lithospheric response to advancing tectonic load with active sedimentation.  相似文献   

16.
The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.  相似文献   

17.
18.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

19.
The reality of the global‐scale sedimentation breaks remains controversial. A compilation of data on the Jurassic–Cretaceous unconformities in a number of regions with different tectonic settings and character of sedimentation, where new or updated stratigraphic frameworks are established, permits their correlation. Unconformities from three large reference regions, including North America, the Gulf of Mexico, and Western Europe, were also considered. The unconformities, which encompass the Jurassic‐Cretaceous, the Lower–Upper Cretaceous and the Cretaceous–Palaeogene transitions are of global extent. Other remarkable unconformities traced within many regions at the base of the Jurassic and at the Santonian–Campanian transition are not known from reference regions. A correlation of the Jurassic–Cretaceous global‐scale sedimentation breaks and eustatic curves is quite uncertain. Therefore, definition of global sequences will not be possible until eustatic changes are clarified. Activity of mantle plumes is among the likely causes of the documented unconformities.  相似文献   

20.
《Geodinamica Acta》2013,26(2):131-144
An extensional event affected the southwest Margin of Iberia during Late Triassic to Early Cretaceous times, giving place to the Algarve basin. This basin was subjected to tectonic instability and it became infilled with siliciclastic and carbonate sequences with abundant interspersed volcanic rocks. Normal and strike-slip faults accommodated the deformation in the Algarve basin. The presence of a single flat or listric detachment surface is inferred from the study of hanging-wall structures. The dynamic and kinematic analyses of fault systems in the Spanish exposure of the Algarve basin allow us to establish three extensional phases. 1) A Late Triassic to Hettangian NE-SW directed extension associated with the initial breaking of Pangea and the opening of the Tethys in the eastern Mediterranean. 2) NW-SE extension from the Sinemurian to the Callovian, interpreted as a result of the activity as a sinistral fault of the Azores-Gibraltar transform boundary. 3) Finally, E-W extension during the Late Jurassic and Cretaceous, related to the North Atlantic rifting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号