首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Taolaituo porphyry‐type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. The mineralization occurs mainly as veins, lenses and layers within the host porphyry. To better understand the link between the mineralization and the host igneous rocks, we studied samples from the underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Five molybdenite samples yield a Re–Os isochron weighted mean age of 133.0 ± 0.82 Ma, whereas the porphyry granitoids samples yield crystallization ages of 133 ± 1 Ma and 130.4 ± 1.3 Ma. The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to the Early Cretaceous porphyry emplacement. Re contents of the molybdenites range from 21.74 to 42.45 ppm, with an average of 32.69 ppm, whereas δ34S values vary between 3.7‰ and 4.2‰, which is typical of mantle sulphur. The 206Pb/204Pb, 207Pb/ 204Pb and 208Pb/204Pb vary in the ranges of 18.276–18.385, 15.566–15.580 and 38.321–38.382, respectively. The Taolaituo Early Cretaceous granitoids are A‐type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Taolaituo deposit occurred contemporaneously with the Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra‐continental extension in northeast China. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The Lakange porphyry Cu–Mo deposit within the Gangdese metallogenic belt of Tibet is located in the southern–central part of the eastern Lhasa block, in the Tibetan Tethyan tectonic domain. This deposit is one of the largest identified by a joint Qinghai–Tibetan Plateau geological survey project undertaken in recent years. Here, we present the results of the systematic logging of drillholes and provide new petrological, zircon U–Pb age, and molybdenite Re–Os age data for the deposit. The ore‐bearing porphyritic granodiorite contains elevated concentrations of silica and alkali elements but low concentrations of MgO and CaO. It is metaluminous to weakly peraluminous and has A/CNK values of 0.90–1.01. The samples contain low total REE concentrations and show light REE/heavy REE (LREE/HREE) ratios of 17.51–19.77 and (La/Yb)N values of 29.65–41.05. The intrusion is enriched in the large‐ion lithophile elements (LILE) and depleted in the HREE and high field‐strength elements (HFSE). The ore‐bearing porphyritic granodiorite yielded a Miocene zircon U–Pb crystallization age of 13.58 ± 0.42 Ma, whereas the mineralization within the Lakange deposit yielded Miocene molybdenite Re–Os ages of 13.20 ± 0.20 and 13.64 ± 0.21, with a weighted mean of 13.38 ± 0.15 Ma and an isochron age of 13.12 ± 0.44 Ma. This indicates that the crystallization and mineralization of the Lakange porphyry were contemporaneous. The ore‐bearing porphyritic granodiorite yielded zircon εHf(t) values between ?3.99 and 4.49 (mean, ?0.14) and two‐stage model ages between 1349 and 808 Myr (mean, 1103 Myr). The molybdenite within the deposit contains 343.6–835.7 ppm Re (mean, 557.8 ppm). These data indicate that the mineralized porphyritic granodiorite within the Lakange deposit is adakitic and formed from parental magmas derived mainly from juvenile crustal material that partly mixed with older continental crust during the evolution of the magmas. The Lakange porphyry Cu–Mo deposit and numerous associated porphyry–skarn deposits in the eastern Gangdese porphyry copper belt (17–13 Ma) formed in an extensional tectonic setting during the India–Asia continental collision.  相似文献   

3.
The Huaheitan molybdenum deposit in the Beishan area of northwest China consists of quartz‐sulfide veins. Orebodies occur in the contact zone of the Huaniushan granite. LA‐ICPMS U–Pb zircon dating constrains the crystallization of the granite at 225.6 ± 2.2 Ma (2σ, MSWD = 4.5). Re–Os dating of five molybdenite samples yield model ages ranging from 223.2 ± 3.5 Ma to 228.6 ± 3.4 Ma, with an average of 225.2 ± 2.4 Ma. The U–Pb and Re–Os ages are identical within the error, suggesting that the granite and related Huaheitan molybdenum deposit formed in the Late Triassic. Our new data, combined with published geochronological results from the other molybdenum deposits in this region, imply that intensive magmatism and Mo mineralization occurred during 240 Ma to 220 Ma throughout the Beishan area.  相似文献   

4.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

5.
The Karamay porphyry Mo–Cu deposit, discovered in 2010, is located in the West Junggar region of Xinjiang of northwest China. The deposit is hosted within the Karamay granodiorite porphyry that intruded into Early Carboniferous sedimentary strata and its exo‐contact zone. The LA‐ICPMS U–Pb method was used to date the zircons from the granodiorite samples of the porphyry. Analyses of 12 spots of zircons from the granodiorite samples yield a U–Pb weighted mean age of 300.8 ± 2.1 Ma (2σ). Re–Os dating for five molybdenite samples obtained from two prospecting trenches and three outcrops in the deposit yield a Re–Os isochron age of 294.6 ± 4.6 Ma (2σ), with an initial 187Os/188Os of 0.0 ± 1.1. The isochron age is within the error of the Re–Os model ages, demonstrating that the age result is reliable. The Re–Os isochron age of the molybdenite is consistent with the U–Pb age of the granodiorite porphyry, which indicates that the deposit is genetically related with an Early Permian porphyry system. The ages of the Karamay Mo–Cu deposit and the ore‐bearing porphyry are similar to the ages of intermediate‐acid intrusions and Cu–Mo–Au polymetallic deposits in the West Junggar region. This consistency suggests the same geodynamic process to the magmatism and related mineralization.  相似文献   

6.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

7.
The Middle–Lower Yangtze Region (MLYR) is one of the most important metallogenic belts in China that hosts numerous Cu–Fe–Au–S deposits. The Hucunnan deposit in the central part of MLYR is a newly discovered porphyry–skarn‐type copper–molybdenum deposit during recent drilling exploration. Laser ablation ICP–MS analysis carried out in this study yields U–Pb isotopic ages of 137.5 ± 1.2 Ma for the Cu–Mo bearing granodiorite rock and 125.0 ± 1.5 Ma for the Cu‐bearing quartz diorites. The Re–Os isotopic dating of seven molybdenite samples gave an isochron age of 139.5 ± 1.1 Ma, suggesting a syn‐magma mineralization of molybdenite in the Hucunnan deposit. Since porphyry‐type molybdenum deposits are rare in central MLYR, the discovery of the Hucunnan deposit suggests possible molybdenite mineralizations in the deep places of the Cu–Mo bearing granitoids. In addition, the U–Pb isotopic age of 125 Ma for the Cu‐bearing quartz diorites implies a new Cu mineralization period for the MLYR that was rarely reported by previous studies.  相似文献   

8.
The Dawan Mo–Zn–Fe deposit located in the Northern Taihang Mountains in the middle of the North China Craton (NCC) contains large Mo‐dominant deposits. The mineralization of the Dawan Mo–Zn–Fe deposit is associated with the Mesozoic Wanganzhen granitoid complex and is mainly hosted within Archean metamorphic rocks and Proterozoic–Paleozoic dolomites. Rhyolite porphyry and quartz monzonite both occur in the ore field and potassic alteration, strong silicic–phyllic alteration, and propylitic alteration occur from the center of the rhyolite porphyry outward. The Mo mineralization is spacially related to silicic and potassic alteration. The Fe orebody is mainly found in serpentinized skarn in the external contact zone between the quartz monzonite and dolomite. Six samples of molybdenite were collected for Re–Os dating. Results show that the Re–Os model ages range from 136.2 Ma to 138.1 Ma with an isochron age of 138 ± 2 Ma (MSWD = 1.2). U–Pb zircon ages determined by laser ablation inductively coupled plasma mass spectrometry yield crystallization ages of 141.2 ± 0.7 (MSWD = 0.38) and 130.7 ± 0.6 Ma (MSWD = 0.73) for the rhyolite porphyry and quartz monzonite, respectively. The ore‐bearing rhyolite porphyry shows higher K2O/Na2O ratios, ranging from 58.0 to 68.7 (wt%), than those of quartz monzonite. All of the rock samples are classified in the shoshonitic series and characterized by enrichment in large ion lithophile elements; depletion in Mg, Fe, Ta, Ni, P, and Y; enrichment in light rare earth elements with high (La/Yb)n ratios. Geochronology results indicate that skarn‐type Fe mineralization associated with quartz monzonite (130.7 ± 0.6 Ma) formed eight million years later than Mo and Zn mineralization (138 ± 2 Ma) in the Dawan deposit. From Re concentrations in molybdenite and previously presented Pb and S isotope data, we conclude that the ore‐forming material of the deposit was derived from a crust‐mantle mixed source. The porphyry‐skarn type Cu–Mo–Zn mineralization around the Wanganzhen complex is related to the primary magmatic activity, and the skarn‐type Fe mineralization is formed at the late period magmatism. The Dawan Mo–Zn–Fe porphyry‐skarn ores are related to the magmatism that was associated with lithospheric thinning in the NCC.  相似文献   

9.
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

10.
The Hongqiling Cu–Ni sulfide deposit in central Jilin Province is located in the eastern part of the Central Asian Orogenic Belt. Rhenium and osmium isotopes in sulfide minerals from the deposit are used to determine the timing of mineralization and the source of osmium, and ore metals. Sulfide ore samples have osmium and rhenium concentrations of 0.28–1.07 ppb and 2.39–13.17 ppb, respectively. Ten analyses yield an isochron age of 223 ± 9 Ma, indicating that the Cu–Ni sulfide deposit in the area formed in the Triassic. The initial 187Os/188Os ratio is around 0.295 ± 0.019 (MSWD = 1.14) and the δ34S values of sulfide ores vary from ?1.50 to +3.00‰. These data indicate that the mineralizing materials were derived mainly from a mantle with some quantities of crustal components introduced into the rock‐forming and ore‐forming systems during mineralization and magmatic emplacement.  相似文献   

11.
Improvements in the technology of laser ablation and ICP-MS instruments make LA-MC-ICPMS a rapid, precise and accurate method for U–Pb zircon geochronology. In this review we describe the main stages of the evolution of this in situ approach from the early 1990s to the present time. Some key points have been progressively improved. The crater size has been reduced to achieve real in situ measurements. The laser wavelength has been reduced as well as the duration of each pulse in order to lower inter-element fractionation. The blank from the gas has to be lowered as far as possible. Double focusing instruments and magnetic field sectors allow flat-topped peaks required for precise isotope ratio measurement to be obtained. The use of a multi-ion counting system significantly improves the sensitivity of the method and the static mode of integration favours the precision of measurement of the transient signal originating from a noisy laser ablated particle beam.Combining the use of a 213 nm UV laser and a MC-ICPMS equipped with a multi-ion counting system operating in static mode, the common precisions achieved for the key ratios 207Pb/206Pb and 206Pb/238U are better than 1% and 3% (2σ) respectively, including error propagation associated with standard normalization. Until now, the use of a zircon standard has remained necessary to ensure the accuracy of the calculated age. A strategy for common-Pb correction is proposed according to the age of the zircon and according to the Th/U ratio of the grains. After recording sixteen to twenty spot analyses the precision usually achieved on the age is about 1% and even significantly better for Proterozoic samples.In order to show the performance achieved by modern LA-MC-ICPMS geochronology, we tested four zircon samples covering a wide age range from 290 to 2440 Ma. These new age determinations can be compared in term of precision and accuracy since they have already been dated by reference methods (ID-TIMS and SHRIMP). Further developments in the technology of ion counters equipping modern MC-ICPMS and in laser systems will certainly be applied to a large field of geochronology studies in the near future as an alternative to SIMS for in situ age determination.  相似文献   

12.
The Ga'erqiong‐Galale skarn–porphyry copper–gold ore‐concentrated area is located in the western part of the Bangong‐Nujiang suture zone north of the Lhasa Terrane. This paper conducted a systematic study on the magmatism and metallogenic effect in the ore‐concentrated area using techniques of isotopic geochronology, isotopic geochemistry and lithogeochemistry. According to the results, the crystallization age of quartz diorite (ore‐forming mother rock) in the Ga'erqiong deposit is 87.1 ± 0.4 Ma, which is later than the age of granodiorite (ore‐forming mother rock) in the Galale deposit (88.1 ± 1.0 Ma). The crystallization age of granite porphyry (GE granite porphyry) in the Ga'erqiong deposit is 83.2 ± 0.7 Ma, which is later than the age of granite porphyry (GL granite porphyry) in the Galale deposit (84.7 ± 0.8 Ma).The quartz diorite, granodiorite, GE granite porphyry and GL granite porphyry both main shows positive εHf(t) values, suggesting that the magmatic source of the main intrusions in the ore‐concentrated area has the characteristics of mantle source region. The Re–Os isochron age of molybdenite in the Ga'erqiong district is 86.9 ± 0.5 Ma, which is later than the mineralization age of the Galale district (88.6 ± 0.6 Ma). The main intrusive rocks in the ore‐concentrated area have similar lithogeochemical characteristics, for they both show the relative enrichment in large‐ion lithophile elements(LILE: Rb, Ba, K, etc.), more mobile highly incompatible lithophile elements(HILE: U, Th) and relatively depleted in high field strength elements (HFSE: Nb, Ta, Zr, Hf, etc.), and show the characteristics of magmatic arc. The studies on the metal sulfides' S and Pb isotopes and Re content of molybdenite indicate that the metallogenic materials of the deposits in the ore‐concentrated area mainly come from the mantle source with minor crustal source contamination. Based on the regional tectonic evolution process, this paper points out that the Ga'erqiong‐Galale copper–gold ore‐concentrated area is the typical product of the Late Cretaceous magmatism and metallogenic event in the collision stage of the Bangong‐Nujiang suture zone.  相似文献   

13.
The Vazante Group consists of Precambrian carbonate-dominated platform deposits that extend along more than 300 km in the external zone of the Brasilia Fold Belt of the São Francisco Basin in east central Brazil. The sequence is about 4.8 km thick and contains a preserved glaciomarine diamictite unit (containing dropstone) at the top and a lower diamictite unit at the bottom. Previous C- and Sr-isotope profiles suggested the correlation of the upper diamictite unit with the “Sturtian” glacial event (ca. 750–643 Ma). However, new Re–Os isotope data from the shales associated with the upper diamictites yield radiometric age estimates between 993 ± 46 and 1100 ± 77 Ma. U–Pb measurements on a suite of clear euhedral zircon crystals that were separated from the same shales associated with the upper diamictite and from the arkosic sandstone above the lower diamictite yield ages as young as 988 ± 15 and 1000 ± 25 Ma, respectively. Based on the Re–Os and U–Pb ages, the best age estimate of the Vazante Group is constrained to be 1000–1100 Ma and thus the two diamictite units are not correlative with the Sturtian glaciation(s) but most likely are records of glacial events that occurred during the late Mesoproterozoic.  相似文献   

14.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The recently discovered Baizhangyan skarn‐porphyry type W–Mo deposit in southern Anhui Province in SE China occurs near the Middle–Lower Yangtze Valley polymetallic metallogenic belt. The deposit is closely temporally‐spatially associated with the Mesozoic Qingyang granitic complex composed of g ranodiorite, monzonitic g ranite, and alkaline g ranite. Orebodies of the deposit occur as horizons, veins, and lenses within the limestones of Sinian Lantian Formation contacting with buried fine‐grained granite, and diorite dykes. There are two types of W mineralization: major skarn W–Mo mineralization and minor granite‐hosted disseminated Mo mineralization. Among skarn mineralization, mineral assemblages and cross‐cutting relationships within both skarn ores and intrusions reveal two distinct periods of mineralization, i.e. the first W–Au period related to the intrusion of diorite dykes, and the subsequent W–Mo period related to the intrusion of the fine‐grained granite. In this paper, we report new zircon U–Pb and molybdenite Re–Os ages with the aim of constraining the relationships among the monzonitic granite, fine‐grained granite, diorite dykes, and W mineralization. Zircons of the monzonitic granite, the fine‐grained granite, and diorite dykes yield weighted mean U–Pb ages of 129.0 ± 1.2 Ma, 135.34 ± 0.92 Ma and 145.3 ± 1.7 Ma, respectively. Ten molybdenite Re–Os age determinations yield an isochron age of 136.9 ± 4.5 Ma and a weighted mean age of 135.0 ± 1.2 Ma. The molybdenites have δ34S values of 3.6‰–6.6‰ and their Re contents ranging from 7.23 ppm to 15.23 ppm. A second group of two molybdenite samples yield ages of 143.8 ± 2.1 and 146.3 ± 2.0 Ma, containing Re concentrations of 50.5–50.9 ppm, and with δ34S values of 1.6‰–4.8‰. The molybdenites from these two distinct groups of samples contain moderate concentrations of Re (7.23–50.48 ppm), suggesting that metals within the deposit have a mixed crust–mantle provenance. Field observation and new age and isotope data obtained in this study indicate that the first diorite dyke‐related skarn W–Au mineralization took place in the Early Cretaceous peaking at 143.0–146.3 Ma, and was associated with a mixed crust–mantle system. The second fine‐grained granite‐related skarn W–Mo mineralization took place a little later at 135.0–136.9 Ma, and was crust‐dominated. The fine‐grained granite was not formed by fractionation of the Qingyang monzonitic granite. This finding suggests that the first period of skarn W–Au mineralization in the Baizhangyan deposit resulted from interaction between basaltic magmas derived from the upper lithospheric mantle and crustal material at 143.0–146.3 and the subsequent period of W–Mo mineralization derived from the crust at 135.0–136.9 Ma.  相似文献   

16.
The Yingchengzi gold deposit, located 10 km west of Shalan at the eastern margin of the Zhangguangcai Range, is the only high commercially valuable gold deposit in southern Heilongjiang Province, NE China. This study investigates the chronology and geodynamic mechanisms of igneous activity and metallogenesis within the Yingchengzi gold deposit. New zircon U–Pb data, fluid inclusion 40Ar/39Ar dating, whole‐rock geochemistry and Sr–Nd isotopic analysis is presented for the Yingchengzi deposit to constrain its petrogenesis and mineralization. Zircon U–Pb dating of the granite and diabase–porphyrite rocks of the igneous complex yields mean ages of 471.7 ± 5.5 and 434 ± 15 Ma respectively. All samples are high‐K calc‐alkaline or shoshonite rocks, are enriched in light rare earth elements and large ion lithophile elements, and are depleted in high field strength elements, consistent with the geochemical characteristics of arc‐type magmas. The Sr–Nd isotope characteristics indicate that the granite formed by partial melting of the lower crust, including interaction with slab‐derived fluids from an underplated basaltic magma. The primary magma of the diabase–porphyrite was likely derived from the metasomatized mantle wedge by subducted slab‐derived fluids. Both types of intrusive rocks were closely related to subduction of the ocean plate located between the Songnen–Zhangguangcai Range and Jiamusi massifs. However, fluid inclusion 40Ar/39Ar dating indicates that the Yingchengzi gold deposit formed at ~249 Ma, implying that the mineralization is unrelated to both the granite (~472 Ma) and diabase–porphyrite (~434 Ma) intrusions. Considering the tectonic evolution of the study area and adjacent regions, we propose that the Yingchengzi gold deposit was formed in a late Palaeozoic–Early Triassic continental collision regime following the closure of the Paleo‐Asian Ocean. In addition, the Yingchengzi deposit could be classified as a typical orogenic‐type gold deposit occuring in convergent plate margins in collisional orogens, and unlikely an intrusion‐related gold deposit as reported by previous studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Xihuashan tungsten deposit is one of the earliest explored tungsten deposits in southeastern China. It is a vein type deposit genetically associated with the Xihuashan granite pluton. Here we report new dating and zircon geochemistry results. Re–Os isotopic dating for molybdenite intergrowth with wolframite in the oldest generation of the Xihuashan pluton yielded an isochron age of 157.0 ± 2.5 Ma (2σ). Zircon U–Pb laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) dating shows that the pluton crystallized at 155.7 ± 2.2 Ma (2σ). This age is similar to the molybdenite Re–Os age for the ore deposit within error. This, together with published data, suggests that the major W(Mo)‐Sn mineralization occurred between 160–150 Ma in southeastern China. These deposits constitute a major part of the magmatic‐metallogenic belt of eastern Nanlin. The lower Re content in molybdenite of the Xihuashan tungsten deposit shows crustal origin for the ore‐forming material. The limited direct contributions from the subducting slab for the tungsten mineralization in the Nanling region suggest a change of the style of the paleo‐Pacific plate beneath southeastern China.  相似文献   

18.
New field mapping, U–Pb zircon geochronology and structural analysis of the southernmost Sardinia metamorphic basement, considered a branch of the Variscan foreland, indicate that it is, in part, allochthonous and was structurally emplaced within the foreland area, rather than being older depositional basement beneath the foreland succession. The Bithia Formation, classically considered part of the ‘Southern Sulcis metamorphic Complex’ (and here termed the Bithia tectonic unit, or BTU), is a greenschist facies metamorphic unit commonly interpreted as Precambrian in age. New geochronology of felsic volcanic rocks in the BTU, however, yield a U–Pb zircon age of 457.01 ± 0.17 Ma (Upper Ordovician). Thus, the depositional age of the unit is younger than the weakly metamorphosed Lower Cambrian rocks of the adjacent foreland succession. New detailed mapping and analysis of the field relationships between the BTU and foreland succession indicates that their contact is a mylonitic shear zone. The metamorphic character, general lithology, and deformational history of the BTU are similar to those of units in the Variscan Nappe Zone located northeast of the foreland area. We reinterpret the BTU as a synformal klippe of material related tectonically to the Variscan Nappe Zone. We infer that it was thrust over and became infolded into the foreland during late stages of the Variscan contractional deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The southern Jiangxi Province is a major part of the Nanling W–Sn metallogenic province of southern China, where all W–Sn ore deposits are temporally and spatially related to Mesozoic granitic intrusions. The Tianmenshan–Hongtaoling orefield is a recently explored territory endowed by several styles of W–Sn mineralization. The orefield comprises three composite granitic plutons: Tianmenshan, Hongtaoling and Zhangtiantang associated with several tens of W–Sn-polymetallic ore deposits (Maoping, Baxiannao, Niuling, Zhangdou, Yaolanzhai and others) along their contacts. In this study, four new SHRIMP zircon U–Pb ages were determined for three composite granitic plutons, and 33 molybdenite samples from five W–Sn deposits were analysed by ICP-MS Re–Os isotopic method. SHRIMP zircon U–Pb ages for both medium to coarse-gained biotite granite and porphyritic biotite monzogranite from the Tianmenshan composite pluton are 157.2 ± 2.2 Ma and 151.8 ± 2.9 Ma, respectively. Molybdenite Re–Os isochron ages for the related Baxiannao fracture-controlled tungsten deposits are 157.9 ± 1.5 Ma. Maoping greisens-type tungsten deposits were emplaced at 155.3 ± 2.8 Ma and the Maoping wolframite–quartz veins at 150.2 ± 2.8 Ma, respectively. The SHRIMP U–Pb age of zircons from the Hongtaoling biotite granite is 151.4 ± 3.1 Ma whereas the molybdenite Re–Os isochron ages of the genetically related Niuling endocontact tungsten quartz veins and Zhangdou exocontact tungsten quartz veins are 154.9 ± 4.1 to 154.6 ± 9.7 Ma and 149.1 ± 7.1 Ma, respectively. The SHRIMP zircon U–Pb age of the Zhangtiantang fine-grained muscovite granite is 156.9 ± 1.7 Ma, whereas the molybdenite Re–Os isochron age for the related Yaolanzhai greisens-type tungsten deposit is 155.8 ± 2.8 Ma. These new age data, combined with those available from the literature, indicate that the ages of W–Sn ores and related granites are Late Jurassic with a peak at 150 to 160 Ma, which corresponds to the widespread Mesozoic metallogenic event in southern China. Molybdenites from this group of tungsten deposits have quite low Re contents (29.1 to 2608 ppb), suggesting continental crustal provenance of the ore metals.  相似文献   

20.
The Western Irish Namurian Basin (WINB) preserves classic examples of basin floor sequences through to slope deposits and deltaic cyclothems. Despite over 50 years of research into the WINB, its sediment provenance remains highly contested. Sedimentological arguments, including palaeocurrent vectors and palaeoslope indicators have been invoked to propose a sediment source from the NW or the west (i.e. from within Laurentia). These same indicators have been subsequently reinterpreted to reflect a southern provenance. It is not clear from sedimentological arguments alone which interpretation more accurately reflects the infilling of the WINB. Regional‐scale constraints on WINB provenance may be obtained with detrital zircon U–Pb geochronology. U–Pb LA‐ICP‐MS detrital zircon analysis was undertaken on samples from three sandstone units at different stratigraphic levels within the WINB siliciclastic sedimentary fill (Ross Formation, Tullig Sandstone, Doonlicky Sandstone). The samples are dominated by 500–700 Ma zircons, which can be correlated with Cadomian–Avalonian orogenic activity within terranes to the south of the WINB (Avalonia/Ganderia, Armorica and Iberia). In contrast, Eastern Laurentia, to the north of the WINB, was devoid of orogenic activity at this time. WINB samples also yield age populations younger than 500 Ma, and older than 700 Ma. These are not diagnostic of a particular source terrane and thus could be derived from terranes north and/or south of the WINB. WINB detrital zircon age spectra can be reconciled by an Avalonian or combined Avalonian–Laurentian provenance for WINB sedimentary strata. Further research is required in order to distinguish between these two possibilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号