首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution spectral observation during the impulsive phase of a flare   总被引:1,自引:0,他引:1  
High-resolution observations of the flare on October 21, 1989 were made with the Domeless Solar Telescope of the Hida Observatory. The following new results have been obtained: (a) during the impulsive phase of the flare, the spectral line asymmetry has spatial fine structures of 1–2; (b) for several points in the flare region the line profile alternatively changes between blue asymmetry and red asymmetry within a few seconds. A possible explanation has been suggested.  相似文献   

2.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

3.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

4.
The impulsive phase of a large solar limb flare of June 20, 1989   总被引:1,自引:0,他引:1  
On 1989 June 20, we observed in H the impulsive phase of a 3B/X1.6 limb flare with high temporal resolution. Line profiles have been acquired every 2.3 s with an imaging spectrograph. During the eruption of a filament we observed in H a moving plasma blob from what we believe to be a second loop which correlated spatially and temporally with a microwave source at 1.4 GHz observed by VLA. A magnetodynamic model is used to understand the development of the moving plasma blob.  相似文献   

5.
The interaction between a shock-wave and the magnetopause is formulated on the basis of one-dimensional magnetohydrodynamics. The magnetopause is assumed to be a tangential discontinuity, and the magnetic field is limited to the case of perpendicularity. Both the forward and reverse shocks' impact on the magnetopause are considered and analyzed separately. The forward shock-magnetopause interaction results in a transmitted shock, a tangential discontinuity, and a simple rarefaction wave. The reverse shock-magnetopause interaction creates a transmitted shock, a tangential discontinuity, and a reflected wave. The propagation of an SSC signal which is related to an interplanetary shock-induced geomagnetic storm's onset-time on Earth is discussed in general terms. It was found in earlier work (Shen and Dryer, 1972) that the propagation velocity of an inter-planetary shock is decreased by about 1015% following its impact with the earth's bow shock; the present study shows that its velocity is then suddenly increased by a factor of two to three after impact with the magnetopause. The fast propagating shock-wave inside the magnetosphere degenerates into a hydromagnetic wave as it advances into an increasing intensity of the distorted dipole geomagnetic field.  相似文献   

6.
7.
We present a report on the strong X5.3 solar flare which occurred on 25 August 2001, producing high-level γ-ray activity, nuclear lines and a dramatic long-duration white-light continuum. The bulk of millimeter radio fluxes reached a peak of ∼100 000 solar flux units at 89.4 GHz, and a few thousands of solar flux units were detected in the submillimeter range during the impulsive phase. In this paper we focus on and discuss (i) the implications inferred from high frequency radio observations during the impulsive phase; (ii) the dynamics of the low corona active region during the impulsive phase. In particular we found that 4–5 × 1036 accelerated (>20 keV) electrons s−1 radiating in a 1000–1100 G region, are needed to explain the millimeter to submillimeter-wave emissions. We present evidence that the magnetic field in the active region was very dynamic, and that strong non-thermal processes were triggered by the appearance of new, compact, low-lying (few thousand kilometers) loop systems, suggesting the acceleration site(s) were also located in the low solar atmosphere.  相似文献   

8.
We propose a model of two acceleration regions, which can explain, on the basis of microwave maser caused by a “hollow-beam” distribution of electrons, the presence of millisecond spikes in the event of 1981 May 16 and their absence in the event of 1981 October 12, and the enhanced continuous emission in the latter. We have also uncovered relations among the features, e.g. the Type IIIG, Type IVDCIM and hard x-ray bursts, that accompany the microwave millisecond spikes during the impulsive phase of a large flare.  相似文献   

9.
In order to study the propagation of solar cosmic rays in interplanetary space a computer program has been developed using a Monte-Carlo technique, which traces the histories of particles released impulsively at the Sun. The particle propagation model considers the adiabatic deceleration during the convective and diffusive transport of the particles, and the model of the interplanetary medium incorporates a radially expanding blast wave which exerts a sweeping action on the particles and accelerates them through the first-order Fermi process. It is shown that energetic storm particle events cannot be simulated by assuming a pure sweeping action of the interplanetary blast wave, but that energization of the particles while reflected at the shock can explain many observed features of such events.  相似文献   

10.
We have analyzed the H filtergrams and vector magnetograms of the active region NOAA 7070, in which a 3B/X3.3 flare occurred on February 27, 1992. The average area per sunspot of this active region was in declining phase at the time of the flare. The vector magnetograms indicate that the magnetic field was non-potential at the flaring site. Besides non-potentiality, the longitudinal field gradient was found to be the highest at the region showing initial H brightening. Further, in H filtergrams no appreciable change in the morphology of the filament tracing the magnetic neutral line was noticed in the post-flare stage. Also, the photospheric vector magnetograms show considerable shear in post-flare magnetic field of the active region. In this paper we present the observations and discuss the possible mechanism responsible for the 3B/X3.3 flare.  相似文献   

11.
In this paper, the observational data in H, radio, soft X-ray, hard X-ray, and -ray emissions for the 3B/X3.0 solar flare on 4 February, 1986 are collected. This flare is studied in detail by using the flare-filament current model. The momentum equations and the energy equations of the filament current have been solved. The influence of the highly sheared background magnetic field on the motion of the filaments is studied through numerical calculation. The results show that the resistive tearing instability is a possible pre-heating mechanism in the preflare phase, and both the rotation of the spiral sunspots and the highly sheared background field are necessary for the energy storage of this flare. The high-energy data of the flare imply that the current-loop coalescence instability is a possible eruptive mechanism.  相似文献   

12.
Z. B. Korobova 《Solar physics》1992,139(1):205-207
A white-light-flare (WLF) was recorded on March 27, 1991 at Tashkent. The WLF occurred at the penumbra of a large, complex sunspot group. The energy released by the WLF per unit time was 2.4 × 1028 erg s-1.  相似文献   

13.
The structure of a strong MHD shock wave which radiates thermally downstream of the shock is studied by asymptotic expansion. The exact integral equation for radiation is adopted for the study. Hence, the optically thick (and thin), the general differential approximate and the exact integral equation solutions may now be compared.  相似文献   

14.
We present the observation and interpretation of a solar radio burst whose evolution of the source position at 48 GHz has been correlated with microwave spectral observations from 3.1 to 19.6 GHz and H imaging spectrograms. The event of November 19, 1990 showed 4 impulsive peaks in microwaves and 2 H kernels. There exists strong evidence that the impulsive emission has originated from nonthermal electrons including an electron beam during the rising phase of the third microwave peak. The complex evolution of the source position at 48 GHz is attributed to two inhomogeneous and spatially separated sources with changing relative brightness.  相似文献   

15.
It is never too strange to expect that an eventual fifth repulsive interaction may also be mediated by a spin-2 field. On the other hand, it is highly unlikely that a spin-1 field may mediate an attractive force.  相似文献   

16.
One of the most powerful and long-lived flares on the active red dwarf YZ CMi is considered. The flare was observed in the U band at the Terskol Peak Observatory on February 9, 2008. During the formation of the flare over the course of 30 seconds, the flare-induced stellar luminosity increased and became more than 180 times the preflare value. The total duration of the flare was approximately one hour. At the flare maximum, quasi-periodic pulsations having a specified period of approximately 11 s, an initial modulation depth of 5.5%, and an exponential damping time of 29 s were discovered using wavelet analysis. Assuming that the pulsations were caused by fast magnetohydrodynamic oscillations of a flare loop, the following parameters were determined in the region of energy release using coronal seismology methods: plasma concentration (2 × 1010 cm−3), temperature (3 × 107 K), and magnetic field strength (0.015 T).  相似文献   

17.
A study has been made of self-similar magnetohydrodynamic spherical shock waves for a rotating atmosphere taking into account the effect of self-gravitation. The energy is assumed to vary with some power of time. A study has been made to investigate the effects of magnetic field in the presence and absence of gravitation. The variation of flow variables is shown in tables for several different cases of physical interest.  相似文献   

18.
A post flare loop system was observed on the west limb at the total solar eclipse of February 16, 1980 in Kenya. Analyzing the monochromatic images and the flash spectra, we obtained the following results: (1) the lower part of the post flare loop system is characterized mainly by distinct cool loops of H and Fe x 6374. Fe x 6374 emitting plasma (T e = 1.0 × 106 K) is highly concentrated in the loops. The 6374 loops are broader in diameter and located very close to but a little higher than the corresponding H loops. The electron densities of the dense part in H and Fe x 6374 loops are 1011 cm-3 and 6 × 109cm-3, respectively; (2) the Ca xv emitting region (3.5 × 106 K) is confined to the upper part of the post flare loops. The electron density of this hot region is estimated as 8 × 109 cm-3 from the Ca xv line intensity ratio, I(5694)I(5445). These observational results led us to construct an empirical model of the post flare loop system which is consistent with the reconnection model of Kopp and Pneuman (1976).Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 267.  相似文献   

19.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   

20.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号