首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

2.
张掖戈壁地区土壤热通量特征分析   总被引:1,自引:0,他引:1  
土壤热通量在地表能量交换中扮演着重要角色,干旱半干旱区土壤热通量更加重要。利用张掖国家气候观象台的土壤热通量观测资料,分析了不同天气状况下戈壁土壤热通量的日变化特征及其与辐射通量的关系。结果表明:晴天大气向土壤传递热量,阴天和雨天土壤释放的热量大于获得的热量。另外还分析了土壤热通量季节和年变化特征。在秋冬季节,土壤热通量基本处于负值而春夏则刚好相反。  相似文献   

3.
准确量化高寒湿地下垫面冻结过程中土壤热通量的变化特征,对认识高寒湿地—大气间水热交换过程有重要的科学意义。本文利用中国科学院麻多气候与环境综合观测站2014年5月至2015年5月的观测资料,分析了下垫面冻结过程中土壤热通量变化特征,探讨了冻结潜热对土壤热通量的贡献。基于温度积分计算土壤热通量的算法,指出在计算冻结过程中的土壤热通量时,需要同时考虑土壤热通量板以上的土壤热贮存及热通量板以上的冻结潜热。研究表明:(1)冻结锋面形成后,锋面所在深度土壤体积含水量迅速降低,锋面以下土壤热通量接近于零,土壤液态水开始冻结,冻结潜热向上穿过热通量板所在土壤层;降水下渗土壤后冻结所释放的潜热能使次日凌晨5 cm深度土壤热通量接近于零。(2)季节性冻结期,凌晨气温较高时穿过5 cm土壤层的向上土壤热通量很小,可能是由表层土壤发生了日冻融循环所致。土壤水释放的冻结潜热使土壤温度波动减弱并维持在冰点附近。高寒湿地下垫面仅在很浅的表层发生日冻融循环,无法通过5 cm土壤温度资料判断下垫面循环出现日期。(3)加入冻结潜热项,土壤热通量的计算值与实测值之间的均方根误差将会从11.5 W m-2下降到6.2 W m-2。以上研究结果对认识寒区陆面过程有重要的贡献。  相似文献   

4.
利用青藏高原(简称高原)9个站点的实测数据分析了表层土壤热通量G0的季节变化、日变化特征,然后利用MODIS数据(MOD13Q1和MOD09CMG)、中国西部逐日1 km空间分辨率全天候地表温度数据集和同化数据(ITPCAS-SRad和ITPCAS-LRad),借助G0遥感估算模型Ma模拟了高原四期(2014年7月12日和10月16日,2015年1月1日和4月7日)的G0空间分布特征。结果表明:G0振幅随季节变化,夏季较大,冬季最小,站点之间振幅不同可能与下垫面有关,下垫面植被覆盖度越高,振幅越小;G0在春、夏季以及全年整体为正,而秋、冬季G0则为负。高原G0呈现倒立的"U"型的日变化曲线,夜晚的变化相对白天而言比较平缓;G0日变化曲线为正值的时长存在明显季节差异,四个季节的顺序是夏季春季秋季冬季;高原G0的空间分布特征与高原地表温度的空间分布有较好的正相关,站点数据显示地表温度每增加1℃,G0随之增大2~5 W·m-2。  相似文献   

5.
不同土壤类型的热通量变化特征   总被引:3,自引:0,他引:3  
利用2004—2007年中国科学院中国生态系统研究网络(CERN)生态站实测土壤热通量、辐射等资料,分析了不同土壤类型表层热通量的日变化和季节变化,以及不同土壤类型的热通量与总辐射、净辐射的关系。结果表明,由于导热率越大,热量传输就越快;热容量越小,热量传输也越快,造成土壤热通量的日较差和年较差较大,所以黄绵土和紫色土的表层热通量日较差最大(220~280 W.m-2),高寒草甸土和水稻土最小(55W.m-2);季节变化中土壤表层热通量的年较差变化范围在12~28W.m-2之间,灰漠土最大,为28W.m-2,热通量年较差从大到小依次为灰漠土、黄绵土、盐碱潮土、红壤土、紫色土、沼泽土、水稻土和高寒潮土,高寒潮土最小,为12W.m-2。不同土壤类型的热通量与总辐射、净辐射呈正相关关系,但不同土壤类型的土壤热通量在12:00(地方时)所占净辐射的比例各不相同,高寒草甸土最小,约为8%;黄绵土最大,为38%,多数土壤的热通量占净辐射的比例在15%~20%之间,这充分表明不同土壤类型表层热通量的传输存在很大差异。  相似文献   

6.
下垫面的非均匀性影响地气通量观测的准确性和代表性,青藏高原复杂下垫面通量印痕分布的研究对地气相互作用的观测、模拟及其天气气候影响均具有重要意义。印痕分析是研究通量观测信息空间代表性的重要方法,通量印痕模型FFP(Flux Footprint Prediction)为计算通量印痕提供了一种行之有效的方法。基于西藏珠穆朗玛大气过程与环境变化国家野外科学观测研究站、阿里荒漠环境综合观测研究站、西藏纳木错高寒湖泊与环境国家野外科学观测研究站、慕士塔格西风带环境综合观测研究站和藏东南高山环境综合观测研究站5个台站2013年观测数据,利用FFP模型对通量印痕进行了模型参数敏感性分析,探讨了不同站点通量印痕分布的时空特点、具体影响因素,进而对观测台站架设提供指导。研究结果表明,通量印痕的主要影响因素为观测高度、风速、风向,下垫面类型为常绿针叶林的林芝站对观测高度、行星边界层高度较其他台站敏感。在青藏高原,使用三维超声风速仪观测数据得到的通量印痕的空间尺度为250~500 m。5个台站中珠峰站白天稳定层结时次最少,占白天数据点的15.69%,阿里站夜间不稳定层结时次最少,占夜间数据点的13.32%。在...  相似文献   

7.
基于对"全球能量水循环亚洲季风青藏高原试验研究"(GAME/Tibet)和"全球协调加强观测计划(CEOP)之亚澳季风青藏高原试验"(CAMP/Tibet)设在藏北高原的安多站、BJ站、D105站和NPAM站以及中国科学院珠峰站和中国科学院纳木错站10~20年晴天日间的辐射观测资料求年均值,分析了高原草甸(草高为5 cm的高原草甸,10 cm的高原草甸和高原稀疏草甸,15 cm的高原草甸)、戈壁和临湖高原草甸这些典型下垫面观测站多年观测的短波向下辐射、短波向上辐射、长波向上辐射、长波向下辐射、净辐射通量和地表反照率的年际变化,得出了青藏高原地表辐射通量的气候特征,发现高原上大部分站点观测到的短波向下辐射有不同程度的减小的年变化趋势,基本所有站点观测的长波向上辐射有不同程度的逐年增加趋势,且高原上基本所有站点观测的长波向下辐射有不同程度的增加趋势,高原地区大部分站点的净辐射通量的年变化趋势基本与短波向下辐射的年变化相一致,青藏高原大部分站点的地表反照率在不同程度上逐年减小。  相似文献   

8.
选取塔克拉玛干沙漠腹地塔中地区和北缘过渡带肖塘地区2013年土壤热通量观测资料,初步比较分析了塔克拉玛干沙漠两种下垫面的土壤热通量变化特征。结果表明:(1)在日变化尺度上,两个站点都有明显的日变化特征,1月份塔中站土壤热通量日平均变化幅度小于肖塘站,日较差分别为58.9 W.m2和72.4 W.m2,4月份两站土壤热通量变化幅度较为接近,日较差分别为88.1W.m2、100.1 W.m2。7、10月份塔中站土壤热通量变化幅度明显高于肖塘站,日较差分别为99.0 W.m2、53.7W.m2,100.3 W.m2、73.3W.m2。(2)不同天气条件下两个站点土壤热通量变化都有很大差异。晴天,塔中站和肖塘站土壤热通量变化都呈现出单峰型,变化幅度较一致,日较差分别为119.7 W.m2、119.1 W.m2。沙尘天和雨天受云层或降水的影响土壤热通量变化波动较大,沙尘天塔中站变化幅度小于肖塘站,日较差分别为83.6 W.m2、133.1 W.m2;雨天塔中站和肖塘站变化幅度都很剧烈,日较差分别为70.6 W.m2、66.6 W.m2。(3)年变化尺度上,塔中站土壤热通量在7月份达到最大值(7.7 W.m2),在11月出现最小值(-5.3 W.m2),肖塘站7月份出现最大值(4.2 W.m2),11月份出现最小值(-10.2 W.m2)。塔中站和肖塘站土壤热通量年总量差异很大,塔中站为16.8 W.m2,能量由大气向土壤传递,土壤为热汇,而肖塘站则为-34.9 W.m2,能量由土壤向大气传播,土壤表现为热源。  相似文献   

9.
棉田土壤热通量的计算   总被引:8,自引:1,他引:8  
申双和  崔兆韵 《气象科学》1999,19(3):276-281
本文在两年棉花田间试验观测的基础上,利用土壤中热传导方程模拟5cm层土壤温度的时间变化,进而推算出其它层次的土壤温度,与实测值相比,模拟均方误最大为0.14,最大温度绝对误差为0.7℃.通过对温度方程求深度上的偏导数获得土壤热通量的计算公式,计算值与实测值比较,均方误最大为0.006,效果较好。本文还通过2cm层土壤热通量与棉花冠层净辐射之间的关系,结果表明土壤热通量与冠层净辐射有着很好的相关性。  相似文献   

10.
应用NCEP地面热通量资料, 研究了青藏高原地面感热、潜热的气候状况及其与初夏东亚大气环流之间的关系。发现高原地面热通量的异常将影响高原地区上空的垂直运动与辐散辐合运动, 从而引起东亚地区高度场及风场的异常。同时, 青藏高原地区地面热通量与后期东亚地区的环流变化也有密切关系, 这种关系可为预测东亚地区初夏环流异常提供有意义的指标。  相似文献   

11.
鉴于计算近地层湍流热通量的规范扩散法在高原地区试用的不理想情况,本文从湍流相似理论出发,根据高原大气科学实验期间格尔木测站的某些特殊资料,建立了计算青藏高原近地层湍流热通量的半经验公式。使用这一公式对所有实验测站的湍流热通量作了全面计算。并对这些计算结果进行了检验,结果合理。  相似文献   

12.
以1997年9月-1998年10月青藏高原西部改则地区自动气象站(AWS)近地层连续观测的梯度资料为基础,计算了高原西部地面感热通量、蒸发潜热通量及地面热源强度,应用Marr小波变换重点分析了地表热通量输送以及与此相关的降水量、土壤湿度和土壤热通量的周期振荡特征.结果表明:地面感热具有明显的30~60天低频振荡,并且在夏季存在准8天的中期振荡;蒸发潜热和降水量以准双周振荡为主.土壤热通量以30~50天低频振荡为主,夏季还存在准8天的中期振荡;土壤湿度在冬季呈现明显的30~50天低频振荡,夏季则为20~30天的低频振荡.  相似文献   

13.
利用2008—2014年逐小时空间分辨率为0.1°的全国自动站观测降水资料和CMORPH卫星反演降水融合资料,研究了青藏高原(下称高原)夏季降水日变化特征,并探讨了不同持续时间和等级降水对降水量日变化的影响。结果表明,整个高原地区夏季降水量和降水频率的日变化表现出明显的凌晨和傍晚的双峰结构,而降水强度的双峰结构却不太明显。进一步对各分区降水日变化特征的分析发现,高原中西部降水日变化特征与整个高原地区的一致,而高原北部(东部)地区降水量和频率的日峰值出现在傍晚(午夜-凌晨)。降水持续时间对降水量日变化有显著的影响,高原夏季降水量日变化的双峰特征是由短时(1~3 h)和长持续性(6 h以上)降水共同作用造成的,午夜-凌晨(傍晚)的降水日峰值主要是由于长持续性(短时)降水所引起。分析不同等级降水量日变化特征发现,高原北部地区小-大雨(暴雨)的降水量日峰值基本出现在下午(午夜),而高原中西部不同等级降水量的日变化基本都呈现出傍晚和午夜-凌晨的双峰结构,高原东部地区不同等级降水量的日变化形式较一致,日峰值出现在午夜-凌晨。  相似文献   

14.
2006-2010年下辽河平原地温和土壤热通量变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
依据国家沈阳农田生态系统野外研究站2006-2010年监测数据,分析0-100cm 土层8个层次的地温、0-100 cm地温、地温极值、0-20 cm地温与气温的关系和土壤热通量的变化趋势。结果表明:从年际变化看,8个层次地温和地温极值呈下降趋势;0 cm层次地温变化受外界影响较大。研究区域年尺度0-20 cm地温与气温有比较一致的变化规律。作物生长季节,可分为4-7月气温上升和8-10月气温下降两阶段;这两个不同阶段的0-20 cm地温与气温分别做线性拟合,与整个生长季4-10月线性拟合相比,线性相关性可信度更高。土壤热通量受气温和土壤质量含水量影响年际变化较大,年尺度土壤热通量≥0 MJ/m2,该区域地表是热汇。  相似文献   

15.
选取塔克拉玛干沙漠腹地塔中地区和北缘过渡带肖塘地区2个观测站,2013年土壤热通量观测资料,初步分析了两地区不同下垫面的土壤热通量变化特征。结果表明:(1)在日变化尺度上,2个站都有明显的日变化特征,1月塔中站土壤热通量日平均变化幅度小于肖塘站,4月2个站的土壤热通量变化幅度较为接近;7、10月塔中站土壤热通量变化幅度明显高于肖塘站。(2)不同天气条件下,2个站的土壤热通量变化都有很大差异。晴天,塔中站和肖塘站土壤热通量变化都呈现出单峰型,变化幅度较一致,日较差分别为119.7 W·m~(-2)和119.1 W·m~(-2);沙尘暴天气,土壤热通量受云层的影响,变化波动较大,塔中站变化幅度小于肖塘站,日较差分别为83.6 W·m~(-2)和133.1 W·m~(-2);降水天气,塔中站和肖塘站变化幅度都很剧烈,日较差分别为70.6 W·m~(-2)和66.6 W·m~(-2)。(3)年变化尺度上,塔中站和肖塘站土壤热通量都在7月达到最大值,分别为7.7 W·m~(-2)和4.2 W·m~(-2),在11月出现最小值分别为-5.3 W·m~(-2)和-10.2 W·m~(-2)。塔中站和肖塘站土壤热通量年总量差异很大,塔中站为16.8 W·m~(-2),能量由大气向土壤传递,土壤为热汇,而肖塘站则为-34.9 W·m~(-2),能量由土壤向大气传播,土壤表现为热源。  相似文献   

16.
谢仁波 《贵州气象》1996,20(2):20-23
本文对地中温度非规律变化的天气指示意义作了初步探讨,通过预报试验及资料反查,确认其指示意义是明显的。  相似文献   

17.
计算土壤热通量的一种新方法   总被引:3,自引:0,他引:3  
  相似文献   

18.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

19.
青藏高原近30年降水变化特征分析   总被引:3,自引:0,他引:3  
利用中国地面气候资料月值数据集信息化资料中青藏高原地区具有代表性的20个站点所记录的降水日数和降水量资料,采用曼-肯德尔检验分析方法(MK检验)和小波分析的方法对青藏高原地区降水日数和降水量进行了时空分布特征的分析,并对其演变规律进行了初步的探讨。结果表明:在1980-2013年之间,我国青藏高原的年降水量与降水日数的变化趋势相反,即:年降水量随时间的推移而升高,年降水日数则随着时间的推移而减少。从1980-2013年以来的34年间,青藏高原降水日数的波动变化存在8年的周期,其年降水量存在5年和11年的波动周期;青藏高原地区降水分布由西北向东南逐渐增加,且降水日数与降水量在地区分布上呈相同的变化趋势,即降水量多的地方降水日数也大。此外,西藏地区年均降水日数与青海地区相比较大,其年均降水量也大于青海地区。  相似文献   

20.
青藏高原西部地表通量的年、日变化特征   总被引:8,自引:6,他引:8  
利用青藏高原西部地区改则和狮泉河两个自动观测气象站1998年全年每天24个时次的风速、温度和湿度等梯度观测资料,采用湍流相似理论.计算了改则和狮泉河的动量通量、感热通量以及潜热通量。结果表明:改则和狮泉河两地的地表湍流通量都具有明显的季节变化和日变化,且其季节变化的相同点表现在感热通量均在5月份最大,1月份最小:而潜热通量均在8月份最大。不同点表现在改则的潜热通量在12月份最小,狮泉河1~5月平均潜热通量为负,以凝结为主,改则的月平均蒸发及全年的蒸发总量比狮泉河的要大。而其感热通量比后者的都小。日变化幅度随季节变化明显,表现在夏季地表通量的日变化幅度大,冬季要小得多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号