首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于土壤湿度融合分析产品及气象观测资料,分析了青藏高原及其典型区域的土壤湿度分布特征以及影响因素.结果表明:青藏高原土壤湿度与高原降水季节有较好的对应关系,降水量多的季节对应大的土壤湿度,反之亦然,即夏季土壤湿度最大,春季和秋季次之,冬季最小;高原外围土壤相对较湿,中部较干,夏季土壤高湿度区从藏东南向西北、塔里木盆地向藏东北扩展,冬季土壤高湿度区向藏东南和塔里木盆地收缩;土壤湿度垂直层次呈现出浅层和深层低、中间层高的特点,从浅层到深层土壤湿度的变化幅度逐渐减小;高原典型区域土壤湿度逐日变化规律与高原区域平均的土壤湿度时间演变接近一致,降水量的多少和湿润区、半干旱区土壤湿度高低值有较好的对应关系,湿润区垂直梯度大,干旱区和半干旱区垂直梯度小;蒸发量、风速、气温以及植被状况均会影响到土壤湿度的分布特征.  相似文献   

2.
本研究利用欧洲中心ERA5再分析资料的逐日土壤湿度(土壤体积含水量)、降水量、位势高度场以及风场数据,重点分析了1981~2020年高原春季浅层(0~7 cm)土壤湿度的时空变化特征,并探讨了青藏高原土壤湿度与高原季风的关系。青藏高原春季土壤湿度西北偏干,东南部相对偏湿的分布特征。对高原春季土壤湿度进行经验正交函数(EOF)分析后发现,其第一模态呈中部与东、西部反向变化特征,该模态存在准3年(2~4年)的振荡周期,这一周期特征在2000~2010年表现的更为显著;第二模态呈南北反向分布,较好地表征高原地区气候带与下垫面覆盖状况。研究发现,高原夏季风与高原春季土壤湿度变化之间存在密切的隔季相关,高原夏季风异常变化是翌年春季土壤湿度变化的主要原因。  相似文献   

3.
青藏高原与中国其他地区气候突变时间的比较   总被引:25,自引:5,他引:20  
丁一汇  张莉 《大气科学》2008,32(4):794-805
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。  相似文献   

4.
气候变暖背景下我国南方旱涝灾害时空格局变化   总被引:16,自引:7,他引:9  
我国南方地区各季节降水异常主要包含三种优势模态:长江及其以南地区降水呈整体偏多或偏少的一致型,长江中下游流域与华南呈反相变化的南北反相型以及东南与西南呈反相变化的东西反相型。其中一致型是南方地区各季节降水变率的第一优势模态。总体而言,在1961—2013年南方地区平均降水存在明显的年代际和长期趋势变化。其中,夏季和冬季南方区域平均降水具有相似的年代际变化特征,而秋季降水的年代际演变几乎与上述两个季节的相反。不过,在近30年南方各季降水量发生年代际转折的时间不尽相同:春季和秋季降水分别在21世纪初期和20世纪80年代中后期之后进入干位相,冬季和夏季降水则分别在80年代中期和90年代初期之后进入湿位相。自21世纪初期以来,南方夏季和冬季降水逐渐转入中性位相。此外,南方春季和秋季降水均呈减少趋势;而夏季和冬季则相反,均呈增多趋势。对于西南地区,除了春季外,其他三个季节的降水均呈减少趋势,出现了季节连旱的特征,尤其是秋旱最为严重。不过,不管是季节降水量还是旱/涝日数,在我国南方大部分地区其线性变化趋势并不十分显著,这与南方降水年代际分量对降水变率存在较大贡献相关。分析还发现,我国南方区域洪涝受灾面积具有比较明显的年代际变化,而干旱受灾面积则没有明显的年代际变化特征,近十多年来西南地区干旱和洪涝受灾出现了交替互现的特点。  相似文献   

5.
利用1992—2012年青藏高原东部地区21个站点的土壤湿度旬值数据资料及对应的年份21个站点的降水逐年、月资料,分析了高原东部土壤湿度、西南降水的时空特征及其关系。结果表明:(1)高原东部近21年年均土壤湿度大致分布为南多北少,其中,春秋两季土壤湿度在九十年代均呈下降趋势,在2001年以后则呈上升趋势;(2)青藏高原东部土壤湿度与西南地区降水量间的相关系数互有正负,可能是土壤湿度对降水的响应具有一定的滞后性造成的;(3)玛曲地区土壤湿度的年际振荡较明显,呈多波动分布,年与季的土壤湿度与降水量呈正相关。  相似文献   

6.
文章探讨了长江中下游夏季暴雨前期青藏高原春季各层次地温的分布特征,重点讨论了1998年夏季长江中下游暴雨前期春季高原的三维热力结构,以及其三维热力结构与其它涝年的相似性,尤其是1998年春季高原地温分布呈现出与其它涝年春季相似的特征;数值模拟试验也证实了1998年春季青藏高原下垫面三维热力结构特征,对长江中下游夏季降水存在着显著影响。青藏高原春季地温在中部等大部分地区为负距平,南部及东部边缘为正距平时,长江中下游地区夏季多雨,即青藏高原春季三维热力结构特征是导致长江中下游地区夏季降水偏多的重要原因之一。  相似文献   

7.
近55年中国大陆地区降水突变的区域特征   总被引:2,自引:0,他引:2  
利用中国大陆1951~2003年160站较为完整的降水观测资料,采用Mann-Kendall检验法和小波分析方法,确定了中国大陆不同区域降水突变事件的大致时间,研究揭示了近55年中国大陆降水突变事件变化的区域特征。得出如下结论:(1)近55年来,中国大陆年平均降水量正在逐步减少。华北地区、四川盆地和东北地区年降水量减少明显。年降水量增加的区域位于长江中下游及其以南地区,另外,西北部分地区和青藏高原南部略有增加。(2)中南地区和青藏云地区年降水在20世纪90年代中后期出现突变,华北地区降水突变出现在20世纪70年代中期,东北地区突变出现在20世纪60年代中期,华南地区降水在20世纪70年代初期出现突变。  相似文献   

8.
中国年极端降水事件的时空分布特征   总被引:39,自引:6,他引:33  
基于中国1955~2004年314个台站逐日降水资料,根据百分位值方法定义了不同台站的极端降水阈值,进而对中国年极端降水事件的时空特征进行了探讨分析.结果表明:江淮北部、湖南、四川西南部及西藏和新疆西部地区与中国其他区域呈反向变化特征,是中国年极端降水事件的主要空间异常模态;中国年极端降水事件的时间变化存在明显的区域性差异,东北、西北东部、华北表现为减少趋势,其中东北和华北发生了突变,而西北西部、长江中下游、华南及青藏高原表现为增加趋势,其中西北西部、长江中下游发生了突变;中国各分区年极端降水事件的周期振荡不完全一致;中国年极端降水事件与年降水量之间存在较好的相关性,从季节来看,夏季极端降水事件与年降水量的相关性最好.  相似文献   

9.
利用吉林省2003—2018年春季土壤湿度数据及同期的气温、降水数据,分析了春季土壤湿度的时空分布特征及其与气候因子的关系.结果表明:吉林省春季土壤湿度总体上呈西低东高分布趋势,16 a无明显趋势变化,2010年是土壤由适宜、轻旱向适宜、偏湿状态发展的转折期.春季土壤湿度与降水量呈正相关关系,与平均气温为负相关关系.季节尺度上,影响春季土壤湿度的主要气候因子是前一年秋季和冬季降水量、前一年冬季平均气温、当年春季平均气温.候尺度上,气温影响时效为4候或以上;降水影响时效为1~2候.春耕生产服务中应重点关注前1~2候的降水情况.  相似文献   

10.
青藏高原作为全球气候系统中的一个典型单元,它对全球气候变化的响应具有敏感性和强烈性。基于青藏高原135个台站1982~2001年的降水资料,利用EOF展开方法,分析青藏高原地区年降水的空间分布和时间演变特征及趋势变化,得出高原北区(青海地区)与南区(西藏地区)的年降水以南北反相变化为主。近20年来,青藏高原北区年降水量呈减少趋势,南区年降水量呈增加趋势,青藏高原年降水的分布自雅鲁藏布江河谷向西北逐渐递减,雅鲁藏布江下游地区降水最多,柴达木盆地西北部降水最少平均年降水量仅17.6mm。  相似文献   

11.
利用1961-2015年中国西北地区128个站的降水观测资料和NCEP再分析资料,分析了年、季降水量与降水日数变化总趋势及其区域分布特征,并采用与平均温度、气候指数相关性来分析和讨论其所受的影响因素。结果表明:(1)西北中西部年降水量呈增加趋势,增加趋势位于0.1%·(10a)-1~10.0%·(10a)-1;西北东部年降水量呈减少趋势,减少趋势均小于5%·(10a)~(-1);春季、夏季和秋季西北西部大部分地区降水量是以增加趋势为主;东部主要为减少趋势,但是在冬季几乎所有站点的降水量呈增加趋势;(2)西北西部降水日数以增加趋势为主,东部地区降水日数以减少趋势为主,大部分站点年降水日数在冬季呈现增加趋势,其他季节则基本表现为西北西部增加、西北东部减少;(3)河西走廊西部、青海高原边坡、西北东部年降水量与年平均气温呈负相关,青海高原年降水量与年平均气温呈正相关,西北地区大部分年降水日数与年平均气温呈负相关;(4)北疆、南疆和西北东部37°N以南地区年平均降水量变率与年平均温度变率呈现负相关,且相关系数较大,而其余地区为正相关;(5)西风带影响西北大部分地区年降水量,东亚季风和南亚季风主要影响西北地区中北部和南部的年降水量。  相似文献   

12.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

13.
中国东部夏季降水异常与青藏高原冬季积雪的关系   总被引:2,自引:1,他引:1  
杜银  谢志清  肖卉 《气象科学》2014,34(6):647-655
基于中国740站月降水、积雪、地温资料和NCEP/NCAR再分析月资料,采用相关分析、合成分析和最大协方差法,研究了1979—2008年青藏高原冬季积雪异常与长江中下游夏季降水的关系及其可能的影响机制。结果表明:(1)在年际时间尺度上,青藏高原中北部12月—翌年1月积雪指数与长江中下游夏季降水呈显著正相关。在年代际时间尺度上,1990s—2000s的高原积雪指数与长江中下游夏季降水具有较好的同位相变化特征。表明高原中北部12月—翌年1月积雪指数对长江中下游夏季降水异常具有较好的指示意义,可作为预测长江中下游夏季降水年际年代变化的依据。(2)高原12月—翌年1月积雪异常偏多,是长江中下游夏季洪涝的一个强信号,12月—翌年1月积雪指数正异常年与长江中下游夏季降水正异常年有很好的一致性。(3)高原冬季积雪异常影响长江中下游夏季降水的可能途径是:高原冬季积雪异常通过影响同期及其后春季地温,再由春季地温以某种方式把异常信号维持到夏季。之后,地温异常又改变了局地地气热量交换,导致周围大气环流异常,从而影响到其下游的降水过程。  相似文献   

14.
对天峨县气象站1984-2013年降水量、年平均气温、季节降水、季节平均气温、月平均降水量、月平均气温、极端气温变化特征及不同年代降水、气温特征等进行统计分析。结果表明:天峨县近30a年际降水变化呈下降趋势,年际平均气温呈上升趋势,多年平均降水量为1339.3mm,多年平均气温为20.5℃。各季节、各月降水分布不均,气温呈明显的季节划分,夏季(6-8月)平均降水量最多,占全年平均降水量54%,冬季最少,占全年平均降水量5%,月平均降水量最高峰出现在6月;一年最热的月份是7月,极端最高气温变化不大,极端最低气温呈下降趋势。20世纪80年代中后期降水正常略少,90年代属于丰水期,进入21世纪后,降水量偏少,从20世纪80年代中后期一直到21世纪头十年气温呈上升趋势,第二个十年的头4年呈下降的趋势。  相似文献   

15.
青藏高原及邻近地区的气候特征   总被引:21,自引:5,他引:16  
利用中国710个站(青藏高原72个站)的气温和降水资料,分析了青藏高原的气候特征及与中国区域气候异常的联系。结果表明:中国多雨日区域随季节分布大致可以分为华南区、华南一青藏高原东南部区、青藏高原区以及华西区共5个区域,多雨日区自东向西移动。青藏高原东南地区降水特征呈双峰型,西北呈单峰型;西南部存在明显的“高原梅雨”、伏旱和秋雨。林芝地区的遥相关分析表明:冬季温度与青藏高原同期温度为正相关,与我国其它大部分地方为负相关;夏季降水与青藏高原南部和长江中下游地区同期降水为正相关,与高原北部同期降水呈反相关关系;冬季温度与黄河到长江流域之间区域夏季降水呈反相关关系。  相似文献   

16.
为了研究青藏高原低涡降水长期特征,利用1979~2015年高原低涡数据集、依照高原低涡降水范围,匹配高原各站逐日降水信息,对高原低涡降水特征进行统计分析。结果表明,青藏高原低涡降水量呈上升趋势,大值中心位于西藏那曲地区,呈向东南凸出递减分布,并以夏季低涡降水为主,全年和夏季高原低涡降水量与总降水量均存在明显的正相关关系。安多站高原低涡降水呈下降趋势,但对年降水的平均贡献率高达三成;那曲站与托托河站高原低涡降水在总体上却呈上升趋势,递增率分别为0.2 mm/a和0.7 mm/a,其中那曲低涡频数与低涡降水强度的正相关系数达0.66,而托托河低涡降水占总降水的百分比却呈下降趋势。高原低涡日降水量等级主要以小雨为主,但中雨却是低涡降水量的主要贡献者。趋势分析发现高原低涡降水递增中心位于青海北部,递增率达到0.9 mm/a,次中心在西藏西南部雅鲁藏布江沿线地区;同时,高原低涡引发小雨降水基本呈全区一致增加趋势,中心位于西藏东北部和青海西南部地区;中雨降水上升趋势主要集中在西藏西南部、青海地区以及四川西部,其中青海南部存在较为明显上升中心区,下降趋势主要分布在西藏北部和东部。  相似文献   

17.
利用1958—2017年长江中下游地区426个国家站逐日降水资料,通过线性趋势分析法、EOF分解法,使用五个降水特征量,分析了60 a来长江中下游地区降水的变化规律。结果表明:(1)长江中下游地区年降水量呈上升趋势,线性趋势为2.21 mm·a~(-1),夏季的线性趋势为2.03 mm·a~(-1),冬季雨量略增,而春、秋两季雨量略减;(2)年降水日数的线性趋势为-0.46 d·a~1,春、秋、冬三季降水日数均有减少,夏季持平;(3)降水强度呈弱上升趋势,降水强度的高值中心在江西以东大部以及湖北东部、安徽南部边缘,夏季的降水强度最大,冬季的最小,四季的降水强度均有弱增加趋势;(4)降水变异系数的高值中心位于安徽西北部边缘,最高值为0.25,低值中心位于湖南西部,最低值为0.14;春季的降水变异系数最低,夏季整体稳定,秋冬两季的波动性较大;(5)以年降水量作为指标可以把长江中下游地区划分为三种空间分布型,即长江中下游流域区域一致型、长江中下游北部和南部南北反相变化空间型以及长江中下游东部和西部东西反相变化空间型。  相似文献   

18.
本文利用NCEP/NCAR月平均再分析资料及中国160个测站月降水资料, 采用经验正交函数分解 (EOF)、相关分析、合成分析等方法, 对青藏高原夏季500 hPa纬向风近59年来的年际、 年代际变化趋势及其与我国降水的关系进行了分析。时空演变特征的分析结果表明: 自1950年以来, 青藏高原夏季500 hPa纬向风总体呈现减弱趋势, 其中在1950年代西风偏弱, 1960年代西风明显偏强, 1970年代至21世纪初西风一直处于偏弱阶段; 纬向风变化趋势的空间分布表现为高原大部分区域上空纬向风呈现减弱趋势, 其减弱趋势由东南向西北递增, 高原西北部及中部地区减弱趋势最为明显; 对高原夏季500 hPa纬向风距平时间序列作EOF分解, 得出第一特征向量的空间分布表现为整体减弱型, 其时间权重系数呈现长期正趋势; 时间系数的11年滑动平均分析表明1950年代后期到1960年代中后期纬向西风整体增强趋势比较明显, 1960年代末到21世纪初为西风减弱阶段, 且期间没有出现明显的上升或下降趋势; 时间系数的突变分析表明纬向风在1967年发生了一次较明显的减弱突变; 时间系数的小波分析表明其具有2~4年的周期, 这一周期成分在1950年代前期和1990年代末至21世纪初这两个时段比较显著。年际、 年代际尺度上高原夏季500 hPa纬向风减弱与我国降水关系的分析均表明: 高原纬向风减弱时长江中下游以北的我国部分地区降水偏少, 以东北和华北表现明显, 长江中下游以南地区降水明显偏多, 降水场与大气环流、 水汽通量散度场都有较好的配置关系。  相似文献   

19.
中国近100年来4个年代际的气候变化特征   总被引:272,自引:2,他引:272  
施能  陈家其  屠其璞 《气象学报》1995,53(4):431-439
研究了本世纪中国年平均气温、年总降水量的气候趋势。指出,20世纪中国西北、东北、华北明显变暖;降水趋势值不大,但以负趋势为主。20世纪80年代中国降水、气温的区域特征明显:华北暖干、西南冷干、东北暖略偏湿、长江中下游冷湿。此外,还研究了20世纪4个年代际的气候变化特征及差异。指出,在数十年尺度的暖背景下,中国的华北、长江下游等大部分地区降水偏少(比冷背景),东北降水偏多。20世纪70年代开始的增暖主要发生在西北、东北;黄河以南的增温还达不到40年代的程度。相应的降水特征:除了黄河以南及江淮流域降水比40年代多以外,其它大部分地区降水偏少。  相似文献   

20.
长江中下游气候的长期变化及基本态特征   总被引:21,自引:9,他引:21  
研究了1885年以来,我国长江中下游四季及年降水量,四季及年平均气温的长期变化,指出长江中下游四个季及年的总降水量(平均气温)都是正的趋势,但有季节的差异,春季是升温同时增雨最显著的季节,还研究了我国长江中下游降水与气温的气候基本态及气候变率的特征及时间演变规律,指出,60年代以后夏季气温变化的异常程度几乎比以前大了一倍,在冬季,近期在暖背景下的冬季气温变率变小的特征表明长江中下游可能出现持续发暖冬特征,还指出,80年代后我国的长江中下游存季降水处于高基本态与高气候变率时段,应注意频繁发生的夏季洪涝灾害,研究还指出,长江中下游夏季降水与印度季风的气候基本态反相关密切,印度季风及东亚夏季风与长江中下游夏季气温变化在各种尺度上有明显的正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号