首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LAS在西北干旱区荒漠均匀下垫面的观测研究   总被引:2,自引:0,他引:2  
利用“古浪非均匀近地层观测试验”的仪器平行对比观测部分试验数据,首先分析荒漠均匀下垫面大孔径闪烁仪(Large Aperture Scintillometer,LAS)光径线上等间距架设的4台涡动相关仪(Eddy Covariance System,EC)观测的摩擦速度和感热通量的一致性.然后,基于4种不同下垫面建立稳定度普适函数分析,利用4台EC观测摩擦速度平均值,计算了LAS观测区域的感热通量,进而比较了LAS和EC两者观测值的差异.结果表明,4台EC观测的摩擦速度与感热通量一致性好,摩擦速度的差别<10%,感热通量的差别在10%左右.4种稳定度普适函数计算的LAS区域感热通量在白天、夜晚与EC观测平均值变化趋势一致,但计算值偏大;TAG (Thiermann and Grassl)稳定度普适函数计算值与EC观测平均值较接近.其主要原因除不同下垫面试验所得稳定度普适函数的差异外,Kipp&Zonen LAS所测感热通量的系统性偏高不可忽视.  相似文献   

2.
杜娟  刘朝顺  高炜 《气象科学》2016,36(2):184-193
以通用陆面模式CLM 3.0(Community Land Model 3.0)为模型算子,基于集合卡尔曼滤波(Ensemble Kalman Filter,En KF)发展了一个土壤温湿度同化系统,主要用于改进模式对土壤温湿度和地表水热通量的模拟精度,并考察集合样本数、同化频率及不同观测量的组合对同化效果的影响。该系统同化了FLUXNET两个站点(阿柔和Bondville)不同土壤深度、不同时间频率的土壤温度和湿度数据。通过对阿柔站不同集合样本数的设计,综合考虑计算成本和计算精度,最终将集合样本数设置为40。通过分析三种同化方案对同化频率的敏感性得出,同化土壤温度最为敏感,同时同化土壤温湿度次之,同化土壤湿度最不敏感。对于阿柔站点,同化系统对不同土壤深度温度和湿度的模拟精度均能提高90%,潜热通量的均方根误差由94.0 W·m~(-2)降为46.3 W·m~(-2),感热通量均方根误差由55.9 W·m~(-2)降为24.6 W·m~(-2)。Bondville站点浅层土壤温度的改进在30%左右,深层土壤温度改进达到60%,对土壤湿度的改进均在70%以上,潜热通量和感热通量的均方根误差分别从57.4 W·m~(-2)和54.4 W·m~(-2)降为51.0 W·m~(-2)和42.5 W·m~(-2)。试验结果表明,同化站点土壤温湿度数据对土壤水热状况及通量的模拟改进非常有效,同时也验证了同化土壤水分遥感产品的可行性和必要性。  相似文献   

3.
青藏高原地区地表能量通量的估算与验证对高原及其周边地区能量和水循环研究具有重要意义,地表能量平衡系统SEBS(Surface Energy Balance System)模型为研究高原非均匀地表区域地表能量通量提供了一种行之有效的方法。基于中国科学院那曲高寒气候环境观测研究站(简称那曲站)、中国科学院纳木错多圈层综合观测研究站(简称纳木错站)和中国科学院珠穆朗玛大气与环境综合观测研究站(简称珠峰站) 2008年辐射资料、大气边界层塔站观测资料,结合MODIS卫星数据,利用SEBS模型估算地表能量通量,并用站点地表能量通量观测资料进行验证。结果表明,模型估算的感热通量和土壤热通量与站点实测值具有较好的一致性,且感热通量和土壤热通量的估算精度明显优于潜热通量;感热通量的估算精度最高,那曲站、纳木错站和珠峰站的均方根误差分别为54. 98,37. 37和27. 10 W·m~(-2);而模型估算的潜热通量验证结果偏差较大和站点实测数据存在"能量不闭合"问题相关。鉴于在地表能量通量观测中广泛存在"能量不闭合"的问题,利用波文比校正方法校正站点实测潜热通量。研究表明波文比校正方法可以明显改善地表通量观测数据"能量不闭合"的问题,那曲站、纳木错站和珠峰站的能量闭合率分别提高了19. 4%,21. 4%和19. 1%;与原始站点实测潜热通量相比,校正后的潜热通量与SEBS模型估算结果一致性较好,3个站点潜热通量的均方根误差分别减少了6. 78,33. 48和29. 30 W·m~(-2)。  相似文献   

4.
利用大理国家气候观象台大口径闪烁仪(LAS)和涡动相关仪(EC)在洱海湖滨农田下垫面的同步观测资料,比较分析了两种仪器测量湍流感热和潜热通量的差异特征。结果表明,LAS测得的湍流感热和潜热通量与EC测得的均有较高的相关性,相关系数分别为0.85和0.90。两种仪器测量结果差异均存在显著的昼夜和季节变化。昼夜变化表现为白天时段LAS的平均感热(潜热)通量比EC的偏小15.6 W·m-2(偏大94.6 W·m-2);夜间时段则相反,LAS比EC的偏大9.3 W·m-2(偏小40.6 W·m-2)。季节变化表现为湿季(5-8月、10月)LAS的平均感热通量比EC的偏小6.9 W·m-2,干季(4月)LAS的平均潜热通量比EC的偏小2.1 W·m-2,其他月份则相反,LAS比EC测得的感热(潜热)偏大5.7(18.1)W·m-2。  相似文献   

5.
大孔径闪烁仪测量戈壁地区感热通量   总被引:3,自引:1,他引:2       下载免费PDF全文
利用2008年6月11~30日在金塔开展的"绿洲系统非均匀下垫面能量水分交换和边界层过程观测与理论研究"期间第一阶段戈壁下垫面大孔径闪烁仪(LAS)的观测资料,用混合对流方法和自由对流方法分别计算了戈壁感热通量。结果表明,对于利用LAS资料计算地表感热通量的方法中,混合对流方法相对于自由对流方法更加适用,且混合对流方法中Andreas给出的参数相对于DeBruin的参数更加适用于戈壁下垫面。此外,LAS测得的感热通量相对涡动相关方法的值较大,提高了地表能量闭合度。  相似文献   

6.
黄土高原影响LAS观测感热通量的物理因素分析   总被引:1,自引:0,他引:1  
利用2010年1月和6月黄土高原定西和庆阳两站大孔径闪烁仪(LAS)的观测数据,结合涡动相关系统(EC)、辐射观测、梯度塔等观测系统的同步观测资料,分析了不同下垫面LAS和EC观测感热通量的时空差异及其与下垫面净辐射、风向、风速和稳定度等物理量的关系。结果表明,LAS和EC观测感热通量值之间的差异(HLAS-HEC)大小与下垫面的不均匀性有关,相对复杂的下垫面HLAS-HEC较大。净辐射Rn是感热通量的主要驱动因子,HLAS-HEC在生长季大于非生长季,并与Rn成正相关。风向对LAS和EC观测感热通量值有显著影响。对流边界层低频涡旋的存在导致EC通量统计值偏低,HLAS/HEC随着风速的增大而减小,随着稳定度z/L的增大而增大。  相似文献   

7.
应用改进地表粗糙度的中尺度模式WRF模拟青藏高原及其周边地区2004-2013年地表湍流通量的变化特征,结果发现,自2004-2013年以来,青藏高原中部和东南部地区感热通量增加,分别增加了9. 952 W·m~(-2)·(10a)~(-1)和14. 595 W·m~(-2)·(10a)~(-1);青藏高原其他区域感热减小,减少了-4. 473 W·m~(-2)·(10a)~(-1);青藏高原周边东南部横断山脉增加了9. 928 W·m~(-2)·(10a)~(-1),云贵高原地区增加了9. 868 W·m~(-2)·(10a)~(-1)和江南丘陵地区增加了15. 177 W·m~(-2)·(10a)~(-1);其他周边地区感热减小,减少的量级为-10. 26 W·m~(-2)·(10a)~(-1)。青藏高原东部地区潜热有较弱的增加[1. 175 W·m~(-2)·(10a)~(-1)],青藏高原其他区域都减小[-3. 762 W·m~(-2)·(10a)~(-1)];青藏高原东侧四川盆地、南侧孟加拉湾附近以及周边北部地区减弱,分别为-0. 27,-2. 416和-2. 287 W·m~(-2)·(10a)~(-1);周边其他地区潜热通量都有不同程度的增加,我国东南部江浙地区有较强的增加[11. 385 W·m~(-2)·(10a)~(-1)],印度半岛增加的幅度不大[2. 988 W·m~(-2)·(10a)~(-1)],云贵高原以东缅甸增加[9. 287 W·m~(-2)·(10a)~(-1)]和黄土高原增加[1. 160 W·m~(-2)·(10a)~(-1)],但云贵高原是减少的[-2. 705 W·m~(-2)·(10a)~(-1)]。  相似文献   

8.
利用2013—2014年6—8月黄河源区近地面的观测数据进行CLM4.5单点模拟植被变化对近地面水热交换影响和能量平衡的研究。结果表明:(1)100%植被覆盖与控制试验(植被覆盖度为50%)向上短波的模拟差值为-6.76 W·m~(-2),裸地(植被覆盖度为0%)与控制试验的差值为7.76 W·m~(-2)。(2)植被覆盖度降低对向上长波辐射的模拟影响较大,其中裸地与控制试验的向上长波辐射模拟差值为5.34 W·m~(-2),而100%植被覆盖与控制试验的向上长波模拟差值仅为-0.62 W·m~(-2)。(3)叶面积指数减少会使地表反照率增大,但辐射通量整体变化幅度不大。其中向上短波平均增加1.35 W·m~(-2),潜热平均减小8.43 W·m~(-2)。(4)叶面积指数增加会使向上长、短波减少,同时潜热通量输送增大,且叶面积指数增加后,向上长波辐射、感热的变化范围略大于叶面积指数减少时。(5)净辐射受到云的影响较大,其变化范围为200~461 W·m~(-2)。6—7月的土壤热通量在2013年不同深度均达到峰值,其中5 cm深处土壤热通量在6—7月的平均值为6.25 W·m~(-2),最大值为30.34 W·m~(-2)。  相似文献   

9.
利用中国科学院那曲高寒气候环境研究观测站那曲/BJ观测点2010年涡动相关仪(EC)和大孔径闪烁仪(LAS)数据,MODIS的地表温度(LST)和归一化植被指数(NDVI)产品,结合印痕方法分析了由EC和LAS数据计算得到的感热通量的差异及造成这种差异的可能原因,研究了两种空间尺度下地表温度和土壤含水量对感热通量的影响。结果表明:干季和雨季时,EC与LAS的感热通量(H_EC和H_LAS)总体而言具有较好的一致性,其差异的主要原因是风向造成印痕差异;7月的感热通量与净辐射、风向的时间序列分析表明,云遮蔽导致的净辐射空间分布不均匀是造成H_EC和H_LAS差异的另一个重要原因;EC和LAS的印痕加权LST平均值与两者感热通量的统计分析表明,印痕内加权LST越高,感热通量越大;对雨季时的EC和LAS印痕内加权NDVI平均值表明,印痕加权NDVI越大,感热通量与净辐射之比越小;EC和LAS两种通量结果分析表明,空间尺度对藏北地区半小时尺度和月尺度感热通量结果都有较大影响。  相似文献   

10.
不同下垫面大孔径闪烁仪观测数据处理与分析   总被引:6,自引:0,他引:6       下载免费PDF全文
大孔径闪烁仪是近年兴起的测量大尺度(500 m~10 km)地表通量的仪器。北京师范大学等单位分别于2002年、2004年在北京昌平小汤山开展了大孔径闪烁仪短期观测实验, 2006年6月又在北京密云建立了长期观测站。利用这些数据, 对大孔径闪烁仪观测数据进行处理与分析, 结果表明:闪烁仪光径高度和风速是影响观测显热通量的关键因子。当地表粗糙元的高度变化相对于光径高度不可忽略时, 零平面位移需要精确确定。波文比在湿润地表需要准确确定, 而气温、气压和动力学粗糙度则为不敏感因子。计算中所需的大气稳定度可用理查孙数判断, 也可借助日出日落时间或净辐射观测值确定。稳定条件下的普适函数目前无统一表达式, 可采用仪器说明书推荐的函数。通过几个站点闪烁仪观测显热通量与涡动相关仪测量值的比较表明:大孔径闪烁仪在均匀和非均匀地表都能得到合理的显热通量观测值。  相似文献   

11.
黄河源区高寒湿地-大气间的水分和热量及碳交换过程是影响青藏高原气候变化的主要因素之一。本文从2013年7月16日至10月19日期间黄河源区麻多湿地下垫面湍流通量涡动相关系统和气象站观测资料中,每月选取3~4天晴天条件下的观测数据,分析了黄河源麻多湿地-大气间感热通量、潜热通量和CO_2通量的日变化特征,并探讨了近地面能量平衡闭合度。结果表明:黄河源高寒湿地下垫面潜热通量和感热通量有日变化过程,日出后水分和热量交换通量逐渐增高,峰值均出现在12:00—16:00(北京时,下同)。在2013年夏季,黄河源湿地下垫面感热通量的最高值出现在9月15:30,达到了150.0 W·m~(-2),潜热通量的最高值出现在7月16:00,达到了300.0 W·m~(-2)。黄河源高寒湿地生态系统的能量消耗主要以潜热为主,近地面能量的闭合度较差,达到了48.8%。湿地净生态系统的CO_2交换通量日变化特征呈"U"型曲线,在整个植被生长季节的日变化过程中,日出后湿地系统吸收大气中的CO_2,净生态系统CO_2交换量NEE(Net Ecosystem Exchange)为负,中午达负极值,极值为-0.55 mg·m~(-2)·s~(-1),出现在7月21日12:30;夜间下垫面释放CO_2,NEE为正。进一步分析结果表明:CO_2交换通量的变化动态范围受空气温度、太阳辐射和植被冠层的影响明显。  相似文献   

12.
选取塔克拉玛干沙漠腹地塔中地区和北缘过渡带肖塘地区2个观测站,2013年土壤热通量观测资料,初步分析了两地区不同下垫面的土壤热通量变化特征。结果表明:(1)在日变化尺度上,2个站都有明显的日变化特征,1月塔中站土壤热通量日平均变化幅度小于肖塘站,4月2个站的土壤热通量变化幅度较为接近;7、10月塔中站土壤热通量变化幅度明显高于肖塘站。(2)不同天气条件下,2个站的土壤热通量变化都有很大差异。晴天,塔中站和肖塘站土壤热通量变化都呈现出单峰型,变化幅度较一致,日较差分别为119.7 W·m~(-2)和119.1 W·m~(-2);沙尘暴天气,土壤热通量受云层的影响,变化波动较大,塔中站变化幅度小于肖塘站,日较差分别为83.6 W·m~(-2)和133.1 W·m~(-2);降水天气,塔中站和肖塘站变化幅度都很剧烈,日较差分别为70.6 W·m~(-2)和66.6 W·m~(-2)。(3)年变化尺度上,塔中站和肖塘站土壤热通量都在7月达到最大值,分别为7.7 W·m~(-2)和4.2 W·m~(-2),在11月出现最小值分别为-5.3 W·m~(-2)和-10.2 W·m~(-2)。塔中站和肖塘站土壤热通量年总量差异很大,塔中站为16.8 W·m~(-2),能量由大气向土壤传递,土壤为热汇,而肖塘站则为-34.9 W·m~(-2),能量由土壤向大气传播,土壤表现为热源。  相似文献   

13.
南疆沙漠腹地大气边界层湍流通量特征的观测研究   总被引:4,自引:0,他引:4  
利用新疆塔中站2006年4月、8月的三维风速。温度和水汽脉动资料,运用涡旋相关法计算得到了春、夏季塔中10m高度的动量、感热和潜热通量。结果表明,塔中地区地表热量输送以感热输送为主。春季每天的最大感热通量变化范围为120—320W·m^-2,月平均值为220W·m^-2;夏季最大感热通量的变化范围为140—340W·m^-2,月平均值为230W·m^-2。感热通量值在夜间为负,白天为正,符号的改变出现在日出、日落前后。夏季潜热通量最大值一般为20—60W·m^-2,平均值为27W·m^-2,潜热通量比感热通量小一个量级。春季动量通量的平均值为-0.063W·m^-2,夏季动量通量的平均值为-0.091W·m^-2。日变化规律比较明显,日出后,动量向下传输增大,在09-10时(地方时)出现一个最大值,随后动量向下传输并开始减小。  相似文献   

14.
1998年南海季风试验期间海 气通量的估算   总被引:2,自引:0,他引:2       下载免费PDF全文
根据1998年南海季风试验西沙海面铁塔梯度观测资料,利用总体(Bulk)系数法和多层结通量廓线法对西沙海面的海-气通量进行了估算,得出两种方法估算的潜热通量、感热通量基本一致。总体系数法估算的潜热通量比多层结通量廓线法略大1~3 W·m-2,感热通量小0~1.5 W·m-2。一般而言,季风爆发期间潜热输送逐渐增加;季风爆发前期夜间潜热通量比季风爆发后期大;季风爆发后期,白天潜热通量明显大于爆发初期和中期。感热通量季风爆发前海面向大气输送,爆发后期大气向海面输送。动量通量和摩擦速度随风速增加。  相似文献   

15.
LI-7500分析仪仪器表面加热效应对开路式涡动相关系统CO2通量观测结果影响显著,利用Burba校正方法对提高观测站CO2通量观测精度、年净生态系统碳交换量(NEE)估算、全球CO2交换量估算和气候变化模拟等具有重要意义.基于临泽站绿洲玉米农田的开路式涡动相关系统和小气候观测系统所获得的一年数据,利用Burba校正方法分别对LI-7500分析仪光路中的感热通量、大气潜热通量、CO2通量以及NEE的季节变化过程进行了修正.结果表明,LI-7500分析仪底部窗口和支杆部分热量交换是光路中感热通量校正量的主要贡献者,平均分别为6.81 W·m-2和2.68 W·m-2,其加热效应主要来源于太阳辐射和电子元件运行产生的热量;加热效应对潜热通量影响最小,平均校正量仅为0.24 W·m-2;Burba校正对CO2通量和NEE的季节变化影响显著,其平均校正量分别为19.14μg· CO2·m-2·s-1和313.21 mg·C·m-2·d-1,而且气温越低加热效应对通量的影响越显著;除生长季空气中水汽浓度显著高于非生长季而导致潜热校正量较大外,生长季其他各通量的校正量明显小于非生长季,生长季光路中感热、周围大气潜热、CO2通量和NEE日校正量分别为6.94 W·m-2、0.33 W·m-2、12.86 μg·CO2·m-2·s-1和161.58mg·C· r-2·d-1,分别是非生长季的60.4%,220.0%,50.6%和37.4%.若未进行仪器表面加热效应的Burba校正,在生长季和非生长季累计高估的绿洲玉米农田生态系统碳吸收量分别为25.85 g·C·m-2和88.47 g·C·m-2.  相似文献   

16.
通过对近两年大口径闪烁仪(Large Aperture Scintillometer)LAS观测资料的分析,揭示了乐至县丘陵地区感热通量的气候变化特点,并探讨了感热能量与其它气象要素的关系.初步分析了当地陆气相互作用.  相似文献   

17.
利用2018年4月—2019年4月南京盘城大孔径闪烁仪(Large Aperture Scintillometer,LAS)观测数据,分析了城镇感热通量的时空变化特征及影响因素。结果表明:1)南京城镇感热通量呈单峰型日变化特征,白天明显大于夜间,且白天晴天明显大于阴天,夜间晴天略小于阴天,晴、阴天小时感热通量年平均分别在2.25~200.53 W·m-2、13.10~132.52 W·m-2波动。2)城镇感热通量夏季明显大于冬季,8月昼、夜分别为112.19、23.54 W·m-2,2月昼、夜分别为35.57、11.57 W·m-2。3)晴天白天条件下,不同风向(通量贡献源区)城镇感热通量存在显著差异,即随着不透水层占比的增加,净辐射分配到感热通量的比例明显提高,当占比大于60%时提高趋势不明显。4)以莫宁-奥布霍夫长度判断大气稳定度为标准,C2n法在计算感热通量的5种大气稳定度判断方法中的误判率较低且数据源于LAS,是比较适宜城镇夜间大气稳定度的判断方法。5)在影响城镇感热通量的地表参数中,有效高度变化的影响最大,风速变化的影响较大特别在秋冬季节更为明显,波文比变化对城镇感热通量的影响较小,温度、地表粗糙度和零平面位移变化的影响可忽略不计。  相似文献   

18.
SEBS模型在黄淮海地区地表能量通量估算中的应用   总被引:1,自引:0,他引:1  
何延波  Zhongbo Su  LI Jia  王石立 《高原气象》2006,25(6):1092-1100
在对SEBS模型的有关参数进行订正的基础上,利用MODIS遥感数据结合地表气象观测数据,对黄淮海地区地表能量通量进行了估算。将SEBS估算结果先与北京顺义定量遥感综合试验(QRSLSP/Shunyi)实测结果进行对比分析,然后与郑州的大孔径闪烁仪(LAS)观测的感热通量进行对比分析。结果表明,SEBS估算的通量与二者的实测结果相当一致。因此,利用改进后的SEBS模型估算的黄淮海地区地表能量通量具有一定的精度,可满足区域日蒸散量计算等的需求。  相似文献   

19.
涡动相关仪和大孔径闪烁仪观测通量的空间代表性   总被引:13,自引:3,他引:10       下载免费PDF全文
在对涡动相关仪和大孔径闪烁仪足迹模型进行敏感性分析的基础上,利用北京密云站2006年8月至2007年12月期间的观测资料,应用足迹模型对观测通量的空间代表性做了初步的分析.结果表明:涡动相关仪和大孔径闪烁仪的源区对风向、Monin-Obukhov长度,空气动力学粗糙度和观测高度/有效高度等因子比较敏感.密云站涡动相关仪的源区白天主要分布在仪器的西南与南面,而夜间则在东北与北面.大孔径闪烁仪的源区为西南一东北向分布.涡动相关仪各月源区形状不同,但大致分布在南北长1000 m、东两宽850 m的范嗣内,而LAS各月源区为西南一东北向分布,长约2060 m,最宽处约为620 m.对涡动相关仪通量有贡献的下垫面主要为园地(67%)和耕地(19%).其中园地的通量贡献比例在夏、秋季比较大,冬、春季稍小,而耕地则相反.大孔径闪烁仪的主要通量贡献源区为园地、耕地和居民地,通量贡献比例分别为49%,28%和11%.其中园地和耕地通量贡献率的变化趋势与涡动相关仪的观测结果一致,但没有涡动相关仪的变化明显.  相似文献   

20.
围栏封育作为直接有效的退化草地恢复治理模式,广泛应用于青藏高原退化草地恢复。围栏封育显著提升植被覆盖并改变地表与大气之间的水热交换,然而当前对其如何影响高寒生态系统水热通量的定量研究不足,缺乏对影响机制的认识。本研究以藏北腹地典型高寒湿地和高寒草原为研究对象,采用涡度相关技术开展禁牧-放牧配对观测,并基于围栏内外2019年7月至2021年6月连续两年的观测数据,探究围栏封育后的地表水热平衡变化,以提升对围栏封育改变地表水热通量机制的认知。结果显示:高寒草原和高寒湿地生态系统水热通量均表现出明显的单峰型日变化特征,且分别以感热作用(波文比为1.60)、潜热作用(波文比为0.31)为主导向大气传输能量。围栏封育降低了高寒草原地表通量值,感热通量减小5.99 W·m-2,潜热通量减小4.84 W·m-2;围栏封育提升了高寒湿地的地表通量值,感热通量增加3.04 W·m-2,潜热通量增加30.95 W·m-2,围栏封育后高寒草原感热通量和潜热通量日均值均下降,高寒湿地则增加。围栏封育对地表能量通量影响强度集...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号