首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foundations of offshore structures are designed to withstand a combination of static and cyclic loads due to ocean waves. Wave action on offshore structures can cause a significant amount of cyclic horizontal and vertical forces to be transmitted to the soil through the foundation. In all these cases, these cyclic loads are considered to be superimposed over the initial sustained static stress due to the self-weight of structures. This study considers various factors that influence the development of deformation and pore water pressure in a typical cemented marine clay. These results show that the sustained static shear stress significantly influences the strength and deformation behavior of marine clay under cyclic loading. Up to a certain range of sustained static stress, there is an improvement in strength during cyclic loading and the cyclic strains are greatly reduced.  相似文献   

2.
Foundations of offshore structures are designed to withstand a combination of static and cyclic loads due to ocean waves. Wave action on offshore structures can cause a significant amount of cyclic horizontal and vertical forces to be transmitted to the soil through the foundation. In all these cases, these cyclic loads are considered to be superimposed over the initial sustained static stress due to the self-weight of structures. This study considers various factors that influence the development of deformation and pore water pressure in a typical cemented marine clay. These results show that the sustained static shear stress significantly influences the strength and deformation behavior of marine clay under cyclic loading. Up to a certain range of sustained static stress, there is an improvement in strength during cyclic loading and the cyclic strains are greatly reduced.  相似文献   

3.
Cumulative Deformation of Soft Clay Under Cyclic Loading   总被引:2,自引:1,他引:2  
Reconstituted specimens are prepared by means of vacuum preloading. Both static and cyclic triaxial tests are carried out, with the specimens consolidated under different principal stress ratios. A finite element method is put forward for calculating the cumulative deformation of soft clay under cyclic loading.  相似文献   

4.
At pesent,it is very popular to estimate pile bearing capacity by use of empirical formula andphysical indexes of soil provided in the design codes for civil construction in China.This paper attempts toapply mechanical indexes of soil and semi-empirical formulas,which are based on soil mechanical theoriesand were summarized and presented by Meyerhof in 1976,to calculate the axial pile bearing capacity.Lo-ading test results of 24 single piles in Tianjin area have been collected and compared with the proposed cal-ulation approach.  相似文献   

5.
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for beth the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are beth the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.  相似文献   

6.
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.  相似文献   

7.
目前海洋石油导管架平台桩基础的轴向极限承载力常用的设计方法为API RP2A(美国石油协会)和静力触探(CPT)的方法.在这两种方法的基础上,提出了用BP神经网络模型对桩的轴向极限承载力进行计算的思路,能够有效地预测桩的轴向极限承载力.根据BP神经网络算法具有较强的非线性映射能力和学习功能的特点,通过对影响单桩极限承载力因素的分析,依据静力触探资料建立了基于BP神经网络的单桩轴向极限承载力预测模型.通过利用API RP2A方法分析成果对该模型进行学习训练和预测检验,证明了预测模型性能良好、具有较高的精度和收敛速度快等特点,验证了神经网络方法的可行性,预测结果能够指导桩基础设计,缩短周期.因而具有较大的工程实用价值.  相似文献   

8.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

9.
Istanbul, the largest city in Turkey and one of the major metropolitan areas in the world, cleaned one of its environmentally polluted areas—Golden Horn—by dredging 5 million m3 of the bottom sediments and pumping the resulting sludge to a storage area behind a dam built at an abandoned rock quarry site in Alibey district. The reclamation of the land that formed over the storage area of Golden Horn dredged material is socially and economically very desirable. In this paper, results from experimental studies that are focused on determining the shear strength behavior of the dredge material and undisturbed soil are presented. Slurry consolidometer test, large model tests and small model tests are used to consolidate the dredged soil samples from Halic to simulate the natural consolidation behavior of these soils. Shear strength parameters are determined by laboratory vane tests; unconfined compression tests; undrained-unconsolidated (UU) and consolidated-undrained (CU) triaxial tests on samples that are obtained through in situ undisturbed samples and laboratory model tank and slurry consolidation. Moreover, the effects of fly ash and lime additives on the undrained shear strength were determined by mixing the materials with the dredged clay from Golden Horn during the model experiments conducted in the laboratory. Based on these findings, equations are proposed that govern the relationships between undrained shear strength and water content value.  相似文献   

10.
湛江地区老粘土分布广泛,呈硬塑-坚硬状,粘聚力大,力学强度高,对沉桩有一定影响。针对湛江地区较多工程高桩码头方桩沉桩施工中出现裂损或入土过浅的现象,结合湛江奥里油电厂油改煤项目码头工程,设计对方桩锥形桩尖优化为H型桩尖,施工中没有出现桩破损现象,最终贯入度、桩尖标高达到设计要求;施工完成后经检测,桩身质量和承载力满足设计要求,效果良好,可供湛江地区类似工程借鉴参考。  相似文献   

11.
This article presents a case history of the performance of a full-scale test embankment constructed on a marine soft clay deposit improved by prefabricated vertical drains (PVDs) in the east of China. For analyzing the subsoil behavior, a 2D FEM model is established, in which the PVD-improved effect is considered by a simplified method of equivalent vertical hydraulic conductivity. The calculated results can predict the settlement behavior well; however, the FEM gives an underestimate for the value of excess pore pressures and it predicts similar values for the dissipation rate of excess pore pressures. The measured undrained shear strength of subsoil, Cu, is compared with the predicted value based on Ladd’s empirical equation and the Modified Cam-Clay model (MCC). The shear strength predicted by Ladd’s equation agrees well with the measured value, whereas the MCC overestimates the ability to improve subsoil shear strength during consolidation. The undrained shear strength of subsoil, Cu, increased as the construction progressed, and the shear strength incremental ratio, ΔCup′, decreased slightly with the degree of consolidation, U.  相似文献   

12.
The pile-driving method produces considerable noise and vibrations. Hence, an auger-drilled pile method was developed as a low-noise and -vibration substitute. However, this method does not guarantee the bearing capacity of the pile unless some amount of pile-driving is performed. Therefore, the noise and vibration problems cannot be completely solved. In this study, a prebored screw pile method is proposed to solve these problems. In this method, piles are constructed by the rotary penetration of a screw pile into a prebored hole filled with some cement milk and whose diameter is smaller than that of the screw pile. To determine the shape of the screw pile, laboratory tests with model screw piles were conducted. Also, field load tests were conducted on an actual screw pile fabricated based on the laboratory test result and on a smooth-surfaced pile. In addition, the behavior of the screw pile was estimated by using three-dimensional finite element analysis. The results of the field load test and the numerical simulation showed that the ultimate bearing capacity and the unit skin friction of the screw pile are very superior to those of the smooth-surfaced pile and the cement milk is an important factor in the prebored screw pile method.  相似文献   

13.
This study has evaluated the vertical bearing capacity by conducting static load tests for noise-free and vibration-free screw pretensioned spun high-strength concrete (PHC) piles installed using two different methods (end-squirting shoe and pre-boring methods). Vertical bearing capacity differences seem to occur due to the displacement of soils near the external circumference of a pile, depending on the installation method. A method by which to evaluate the bearing capacity of screw concrete piles is suggested by considering the equations that already have been used to calculate the bearing capacity of piles. Based on static load tests and analysis, the pile installed using the end-squirting shoe method was assumed to be a bored pile and it was reasonable to use the equation proposed by the Japanese Geotechnical Society. At the same time, the pile installed using the pre-boring method was deemed a low soil displacement pile and so it was reasonable to apply the equations proposed for calculating the bearing capacity of the driven pile suggested by the Architectural Institute of Japan.  相似文献   

14.
通过研究黏土矿物及掺杂黏土矿物后湖泊沉积物磷的吸附/解吸特性,分析了高岭土、膨润土和沸石掺杂于湖泊沉积物后对磷稳定固定化的可行性。试验结果表明:掺杂膨润土稳定固化磷的效果最优,其次是高岭土,但掺杂沸石减小了沉积物对磷的吸附能力。具体结果是,按5%和10%比例掺杂高岭土时,沉积物吸附磷的能力增加,最大吸附量增加17.33%;按20%和40%掺杂时,沉积物吸附磷的能力减小,最大减小了43.31%。掺杂比例小时,高岭土与沉积物之间的阳离子交换过程扩大了空隙,增大了吸附量。达到平衡后,继续掺杂高岭土,引起空隙堵塞,减小了吸附量。掺杂膨润土的比例越大,沉积物吸持磷能力越强,按40%掺杂时,最终吸持率高达81.82%。这与膨润土表面积大、活性成分多有关。沸石由于孔道内被水分子和其他阳离子占据,有效吸附面积减小,对磷稳定化不起作用。  相似文献   

15.
Abstract

A nonlinear pile‐soil interface model incorporated in a boundary element analysis is presented to simulate both the static and cyclic behavior of piles embedded in cemented and noncemented calcareous sediments. Based on the soil parameters derived from model test data, theoretical predictions are made for a few field tests. Finally, theoretical solutions are obtained for a full‐scale hypothetical pile embedded in homogeneous and layered calcareous sediments.  相似文献   

16.
The degradation strength of soils under cyclic loading is studied and a method for deter-mining the cyclic degradation strength with cyclic triaxial tests is given in the paper.Furthermore,a dum-my static method for estimating the undrained bearing capacity for offshore soft foundation under waveloads is developed.It can consider the effect of the difference of cyclic stress for different parts of the foun-dation on both the degradation strength of the foundation soil and the bearing capacity so that the esti-mated result can better reflect the real condition of foundation under cyclic loading.The method can be ap-plied to plane and space problem.  相似文献   

17.
Abstract

This paper presents the results of a series of model tests performed to study the shaft capacity of pre-bored grouted planted nodular (PGPN) pile in dense sand. The influence of the vertical overburden pressure on the shaft capacity of the PGPN pile is also investigated based on the test results. The test piles were equipped with strain gauges to measure the axial loads during the loading process, moreover, a foam plate was buried beneath pile tip to eliminate the influence of tip resistance on the shaft capacity. Some conclusions can be drawn based on the test results: the peak skin friction of PGPN pile increases with the increase of vertical overburden pressure applied on the foundation soil, while the rate of increase decreases with the increasing overburden pressure; the surface of the pile–soil interface of PGPN pile is relatively rough, and significant dilatant increase in lateral stress occurs during the loading process.  相似文献   

18.
自升式钻井平台插桩是地基土在桩靴荷载作用下发生连续的塑性破坏的动态过程,当地基极限承载力等于桩靴荷载时插桩完成。经典土力学极限承载力理论对土体潜在滑动面做了假设,无法有效分析土体内部的破坏过程。本研究应用有限元法(FEM )对插桩过程进行了模拟,得到地基土的破坏机制以及中间荷载下土体的应力、应变情况,通过和各理论公式计算的极限承载力进行对比分析,分析影响地基极限承载力的因素。研究表明,基础宽度与硬土层厚度的比值 B/H越大,下卧软土层越容易发生塑性破坏,极限承载力明显下降,当B/H<0.286时,可以忽略下卧软土层对地基承载力的影响。  相似文献   

19.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

20.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号