首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtremor Measurements for the Microzonation of Dinar   总被引:3,自引:0,他引:3  
v--vThe geotechnical site conditions in Dinar town located in western Turkey were investigated after the 1995 Dinar earthquake based on borings, in situ penetration tests, seismic wave velocity measurements, and microtremor records. The variation of damage distribution within the town was evaluated with respect to 23 district damage ratios calculated, based on the detailed damage survey conducted by the General Directorate of Disaster Affairs. Site amplifications were estimated from microtremor spectral ratios and microzonation was performed using a GIS methodology. The results of in situ penetration tests and seismic wave velocity measurements as well as the damage distribution were compared with the amplification zonation obtained from microtremor records. The results indicate the applicability of microtremor spectral ratios for assessing the local site conditions and site amplifications.  相似文献   

2.
Taipei, the capital of Taiwan, suffered from destructive earthquakes four times during the 20th century (M L = 7.3 on April 15, 1909; M L = 6.8 on November 15, 1986; the Chi–Chi M L = 7.3 earthquake on September 21, 1999; and M L = 6.8 on March 31, 2002). Analysis of recorded data shows a strong dependence of spectral amplification in the Taipei Basin on earthquake depth and azimuth. At low frequencies (f < 3 Hz) significant larger amplifications are observed for shallow earthquakes as compared to intermediate depth events. The former ones also display strong azimuthal dependence. As structures with large response periods such as bridges and tall buildings are sensitive to these low frequencies the understanding of the associated wave effects within the basin and their role for site effect amplification is critical. The tool we employ is 3D finite-difference modeling of wave propagation of incident wave fronts. The available detailed model of the basin allows studying the wave effects. Modeling clearly reveals that basin edge effects as observed in data are related to surface wave generation at the basin edges with a high degree of azimuthal dependency. The reproduced site amplification effects are in qualitative agreement with the observations from strong motion data.  相似文献   

3.
Approximately 4000 people were killed due to collapse of buildings in downtown Adapazari during the 1999 Izmit, Turkey earthquake (Mw = 7.4). The downtown is located on a deep sedimentary basin, so-called Adapazari basin. We study site effects of the Adapazari basin based on strong- and weak-motion data obtained by a temporary array observation deployed in and around the Adapazari basin after the earthquake. Four moderate-size aftershocks (M4.6–M5.8) are selected in our study. We evaluate the S-wave amplifications in the basin by using the traditional spectral ratio method. The spectral ratios show that the S waves are considerably amplified in the frequency range of 0.5 to about 5 Hz at the basin sites, but are apparently de-amplified at frequencies higher than about 10 Hz. We make a quantitative interpretation of the empirical amplifications based on the S-wave velocity structures at the stiff-soil reference site as well as at the basin sites; these structures were estimated by the microtremor array measurements. Through the interpretation, we confirm that the amplifications at low frequencies are attributed to the thick sedimentary layers in the Adapazari basin and that the apparent de-amplifications at high frequencies are partly due to the reference site response. In addition to the considerable S-wave amplifications, the basin site records show long-period (about 2 sec) later phases after the S-wave arrival; these later phases are basin-transduced surface waves that are originated from the source and transmitted into the basin. The predominant period of these waves apparently depends on the earthquake magnitude. We conclude that heavy damage in downtown Adapazari during the 1999 Izmit earthquake was caused not only by strongly amplified S-waves but also by long-period basin surface waves of long duration.  相似文献   

4.
We study site effects using 520 weak motion earthquake records from a vertical array in Aegion, Greece. The array is inside a basin, has four stations in soil, and one in bedrock (178 m depth). The site is marked by high seismicity and complex surface geology. We first use the records to establish the downhole accelerometer orientations and their evolution with time. Then we estimate site effects using empirical spectral ratios with and without a reference site (standard and horizontal-to-vertical spectral ratio). We find significant site amplification which cannot be accounted for by 1D model predictions, along with a significant difference in the amplification level between the two horizontal components. These are indications of 2D effects, namely surface waves generated at the basin edge. The difference in amplification between the horizontal components is maximised when these are rotated with respect to the orientation of the basin edge. The strongest amplification takes place in the direction parallel to the basin edge (SH, or out-of-plane motion), and is up to 2 times higher than in the perpendicular direction (SV, or in-plane motion). This directional effect on the amplification is corroborated by numerical 2D modelling using incident SH and SV waves, with the former possibly generating strong Love waves. In the records, the directionality is clear for windows containing the largest amplitudes of the records (S waves and strong surface waves), while it tends to vanish for coda-wave windows. This directionality is also observed when using response spectral ratios rather than Fourier ratios. We compute soil-to-rock amplification factors for peak ground acceleration (PGA) and find it is significantly higher than what is predicted by current design codes. We attribute this difference to the basin edge amplification, linear soil behaviour, and to the inability of simple scalar values like PGA to describe complex amplification effects. Finally, we analyse the earthquake records at a surface station near the slope crest and do not observe significant topographic amplification.  相似文献   

5.
Seismic site amplification studies are generally used to assess the effects of local geology and soil conditions on ground motion characteristics. Although extensive reviews on site amplification phenomena associated with stratigraphic effects can be found in the specialized literature, it should be pointed out that most of the practical applications have been limited to the study of vertically propagating shear horizontal (SH) waves, i.e., to the 1-D soil amplification problem. Furthermore, little attention, if any, has been devoted to the study of the effects of non-vertically incident SH waves on surface accelerograms and on the earthquake response of structures. In the present work, the study is extended to an investigation of 2-D site amplification of non-vertically propagating seismic shear waves in multilayered viscoelastic soil deposits. Sensitivity analyses of the effects of non-vertical incidence on site amplification functions are performed based on site geotechnical data collected from post-seismic investigations of the 1980 El-Asnam earthquake. Analytical results are discussed in terms of seismic site transfer functions, spectral ratios, surface acceleration time histories, and structural response spectra for different values of wave incidence angle. Both bedrock and rock outcropping cases are examined.  相似文献   

6.
Dinar earthquake (Mw=6.0, USGS) occurred on October 1, 1995 causing casualties and physical damage (Io=VII–VIII MSK). The earthquake was associated with predominantly normal faulting. The PGA in Dinar was 0.33 g. Strong motion data associated with the mainshock and aftershocks of the 1995 Dinar, Turkey earthquake have been analyzed to investigate the source, attenuation and site response parameters. Strong motion data were baseline corrected, local magnitudes were computed and inelastic attenuation parameters, seismic moments and corner frequencies were assessed. A parametric analysis is attempted to understand the correlation of damage distribution with the fault parameters. It is believed that the obtained data will complement the relatively scarce earthquake data associated with extensional regimes.  相似文献   

7.
The aim of this study was to investigate the role of VS30 in site amplifications in the Adapazari region, Turkey. To fulfil this aim, amplifications from VS30 measurements were compared with earthquake data for different soil types in the seismic design codes. The Adapazari area was selected as the study area, and shear-wave velocity distribution was obtained by the multichannel analysis of surface waves (MASWs) method at 100 sites for the top 50 m of soil. Aftershock data following the Mw 7.4 Izmit earthquake of 17 August 1999 gave magnitudes between 4.0 and 5.6 at six stations installed in and around the Adapazari Basin, at Babalı, Şeker, Genç, Hastane, Toyota and Imar. This data was used to estimate site amplifications by the reference-station method. In addition, the fundamental periods of the station sites were estimated by the single station method. Site classifications based on VS30 in the seismic design codes were compared with the fundamental periods and amplification values. It was found that site amplifications (from earthquake data) and relevant spectra (from VS30) are not in good agreement for soils in Adapazari (Turkey).  相似文献   

8.
The basin edge effect, i.e., the interference of the direct S wave with the surface wave diffracted off the basin edge has been invoked by many authors to explain the damage distribution during the January 17, 1995 Hyogo-Ken Nanbu (Kobe) earthquake. Here we present the results of numerical experiments obtained with the spectral element method in 2-D geometry. Our results confirm that the amplification of horizontal motion close to the basin edge can be twice as large as the one measured in the center of the basin. This additional amplification is shown to depend strongly on the edge geometry and on frequency, due to physical dispersion of diffracted surface waves. In particular we obtain maximal amplification around 3 Hz, at frequencies critical for buildings.  相似文献   

9.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

10.
This study assesses the 3D amplification effects in shallow basins and quantifies the effects of site‐city interaction (SCI) on high‐rise buildings. A regional‐scale 3D spectral element simulation is conducted on the Tuen Mun‐Yuen Long basin, which contains multiple subbasins with heterogeneous and nonlinear soil profiles, while 3D city models with various building layouts are fully integrated into the basin model for our SCI study. We found a good correlation between spectral amplification factors and soil depths. Site response is significantly amplified at basin edges and centers due to surface waves generated at basin edges and the focusing effects stemming from 3D basin geometry. Transfer functions of 3D basins can be up to fourfold at fundamental frequencies as compared to 1D response, and further amplifications occur at high frequencies due to surface waves. In the SCI simulations, we observe wave trapping in the open space amid buildings resulting in energy concentration and up to twofold PGA amplifications. The wave trapping effect diminishes as the space between buildings increase beyond their range of influence (~100 m). The SCI analyses show that destructive kinetic energy in superstructures increases 28% in one horizontal direction but decreases 22% in the other. Our study concluded that, 1D site response analysis can significantly underestimate the seismic demand in shallow basins. Site‐city interaction of high‐rise buildings increases the short‐period spectra of ground motions, leading to an increase in their story accelerations by up to 50% and to a substantial decrease in the seismic safety of short structures in their vicinity.  相似文献   

11.
12.
In this work we studied the performance of different numerical approaches to simulate the large amplifications of long period earthquake ground motion within the Gubbio plain, a closed-shape intra-mountain alluvial basin of extensional tectonic origin in Central Italy, observed during the Umbria-Marche 1997 seismic sequence. Particularly, referring to the Sep 26 1997 Mw6.0 mainshock, we considered the following numerical approximations: (a) 3D model, including a kinematic model of the extended seismic source, a layered crustal structure, and the basin itself with a simplified homogeneous velocity profile; (b) 2D model of a longitudinal and transversal cross-section of the basin, subject to vertical and oblique incidence of plane waves with time dependence at bedrock obtained by the 3D simulations; (c) 1D model. 3D and 2D numerical simulations were carried out using the spectral element code GeoELSE, exploiting in 3D its implementation in parallel computer architectures. 3D numerical simulations were successful to predict the observed large amplification of ground motion at periods beyond about 1 s, due to the prominent onset of surface waves originated at the southern edge of the basin and propagating northwards. More specifically, the difference of 3D vs 2D results is remarkable, since the latter ones fail to approach such large amplification levels, even when an oblique incidence of plane waves is considered.  相似文献   

13.
风化半圆形河谷对柱面SH波的散射解析解   总被引:1,自引:0,他引:1       下载免费PDF全文
风化河谷地震效应对建在此类场地上工程结构(如大坝、桥梁)的动力稳定性具有潜在的威胁,为揭示河谷风化层对地面运动的影响,利用波函数展开法推导风化半圆形河谷对线源柱面SH波散射问题的解析解。计算不同震源位置条件下风化半圆形河谷的地表位移反应和地面运动放大因子,分析地面运动的幅值和形态,发现随着震源距离的增大,在河谷附近地震动的放大和衰减的交替更频繁。  相似文献   

14.
2008年11月10日在青海柴达木盆地北缘发生了大柴旦M_W6.3地震,为了研究该地震的区域地震波传播与地面运动特征,本文利用地质资料和地壳速度结构研究成果,构建了柴达木盆地及周边区域三维传播介质模型,采用有限差分方法模拟了大柴旦地震波场传播过程以及地面运动分布特征.结果表明,柴达木盆地对波场传播有明显影响,表现为地震波传入盆地后在边界产生次生面波,盆地沉积物对地震波具有围陷作用,地震地面运动在盆地内振幅增大、持时延长.模拟结果给出的地震地面运动峰值速度分布以及理论地震图均和观测结果符合较好,反映数值模拟较好地给出了观测地面运动的主要特征以及传播介质模型的合理性.  相似文献   

15.
付晓  杨长卫  韩宜康 《地震工程学报》2016,38(5):775-782,807
设计并完成了1∶10大比例尺的边坡大型振动台模型试验,试验模型尺寸为4.4m×4.4m×1.8m(长×宽×高),斜坡模型表面包含30°、45°、50°、60°四个不同坡度的坡面,模拟岩体材料采用重晶石粉、河砂、石膏、黏土和水按比例配制而成。通过输入不同类型、幅值、频率的地震波来研究模型边坡的动力响应规律,在试验数据分析中采用三维局部坐标系。试验结果表明:边坡临空面方向和竖直方向的加速度高程放大效应随坡面角度的增大而增强,在坡面角度由45°→50°变化时增长趋势呈明显"台阶状"形式,而边坡走向方向的峰值加速度高程放大效应基本不随坡面角度变化;边坡各向的峰值加速度的高程放大效应随着输入地震波幅值的增大而减小,表现出"量级饱和"特性;加速度傅里叶谱的频谱成分随着高程的增大,边坡岩体对于试验模型自振频率f周围的频率成分具有显著的放大作用,而对于其他频率成分则具有滤波作用;加速度反应谱沿高程的形状基本一致,并且卓越周期对应的反应谱幅值沿高程具有一定的放大作用,而在其他周期T处,尤其是长周期部分(低频部分)则存在一定的减小作用,对于临空面方向来讲,具有明显的波峰现象。试验结果有助于揭示边坡在地震作用下的失稳机制,为边坡工程的抗震设计提供有益的参考。  相似文献   

16.
Three studies of site amplification factors, based on the recorded aftershocks, and one study based on strong motion data, are compared one with another and with the observed distribution of damage from the Northridge, CA, earthquake of 17 January 1994 (ML=6.4). In the epicentral area, when the peak ground velocities are larger than vm≈15 cm/s, nonlinear response of soil begins to distort the amplification factors determined from small amplitude (linear) wave motion. Moving into the area of near-field and strong ground motion (vm>30 cm/s), the site response becomes progressively more affected by the nonlinear soil response. Based on the published results, it is concluded that site amplification factors determined from small amplitude waves (aftershocks, small earthquakes, coda waves) and their transfer-function representation may be useful for small and distant earthquake motions, where soils and structures respond to earthquake waves in a linear manner. However in San Fernando Valley, during the Northridge earthquake, the observed distribution of damage did not correlate with site amplification determined from spectra of recorded weak motions. Mapping geographical distribution of site amplification using other than very strong motion data, therefore appears to be of little use for seismic hazard analyses.  相似文献   

17.
The strong motion of a small long and narrow basin caused by a moderate scenario earthquake is simulated by using the spectral-element method and the parallel computing technique.A total of five different geometrical profiles within the basin are used to analyze the generation and propagation of surface waves and their relation to the basin structures in both the time and frequency domain.The amplification effects are analyzed by the distribution of peak ground velocity(PGV)and cumulative kinetic energy(Ek) in the basin.The results show that in the 3D basin,the excitation of the fundamental and higher surface wave modes are similar to that of the 2D model.Small bowls in the basin have great influence on the amplification and distribution of strong ground motion,due to their lateral resonances when the wavelengths of the lateral surface waves are comparable to the size of the bowls.Obvious basin edge effects can be seen at the basin edge closer to the source for constructive interference between direct body waves and the basin-induced surface waves.The Ek distribution maps show very large values in small bowls and some corners in the basin due to the interference of waves propagating in different directions.A high impedance contrast model can excite more surface wave modes,resulting in longer shaking durations as well as more complex seismograms and PGV and Ek distributions.  相似文献   

18.
The simulation of the seismic response of heterogeneous sedimentary basins under incident plane waves is computed using the Indirect Boundary Element Method (IBEM). To deal with these kinds of basins we used approximate analytical expressions for the two-dimensional Greens functions of a medium with constant-gradient wave propagation velocity. On the other hand, for the homogeneous half space underlying the sedimentary basin, the full space Greens functions were used. The response of semi-circular heterogeneous basins under incident SH waves is explored by means of the displacements in the frequency-space diagrams and synthetic seismograms. Moreover, we compared these results with those obtained for other homogeneous semi-circular models. The principal differences among them are pointed out. This simulation provided interesting results that displayed a complex amplification pattern in a rich spectrum of frequencies and locations. The maximum amplitudes levels were found around the edges of the heterogeneous sedimentary basins. In time domain some features characterize the seismic response of the basin which include enhanced generation and trapping of surface waves inside the sediments, and the reduced emission of seismic energy to the hard rock. In the heterogeneous models the lateral reflections of surface waves greatly influence the total displacements at the free surface in comparison with the homogeneous models where the displacements have a shared influence among both vertical and lateral reflections.  相似文献   

19.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, we investigate the site amplification effects observed in the Norcia plain, Central Italy. Data from 30 selected local earthquakes (2 ≤ Ml ≤ 4.1) recorded by a temporary seismic network composed by 15 stations, are analyzed to determine the spatial variability of site effects. Both the Horizontal-to-Vertical spectral ratio and the Standard Spectral Ratio techniques are applied to estimate the site amplification effects. The results show that most of the sites in the valley are affected by strong amplifications (up to a factor of 20) in the frequency range 0.5–5 Hz. The value of the fundamental frequency of resonance is strictly dependent on the location within the basin and on the sediment thickness. Strong amplifications also affect the vertical components. The time-frequency analysis performed on a station located inside the basin shows the presence of a large spectral amplitudes after the S-wave phase, not observed on a station located on the bedrock, suggesting the presence of locally generated wave trains. Then, in agreement with earlier observations for other alluvial basins in Central Italy, 2D–3D effects play an important role in determining the site amplification effects in Norcia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号