首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geological and geomorphic manifestations of the source of the earthquake that occurred in the southern Gorny Altai on September 27, 2003, are described. This earthquake, the strongest over the entire history of seismological observations, caused damage to buildings and structures in the Chuya and Kurai basins and was accompanied by exposure of its source at the surface with formation of a system of seismic ruptures trending in the northwestern direction. The linear zone of seismic rupture was traced for more than 70 km on the northern slopes of the North Chuya and South Chuya ranges, and a developed network of related splays was found. The secondary (gravitational and vibrational) seismic dislocations were expressed as downfalls, landslides, and gryphons in the pleistoseist zone. These dislocations occur over an area of approximately 90 × 25 km2 that broadly coincides with the region of quakes having intensities of IX–VII. The paleoseismogeological investigations performed in the source region of the 2003 earthquake have shown that seven seismic events with M = 7.0–8.0 occurred in its source over the last 5000 years with a 500-to 900-year recurrence period. The study of the tectonic setting of the earthquake source in the Gorny Altai has allowed northward tracing of the main seismically active zones of the Mongolian and Gobi Altai, where earthquakes with a magnitude M > 7.0 occurred repeatedly, in particular, during the 20th century, and combination of all mountain systems of the Greater Altai into a common high-magnitude seismotectonic province.  相似文献   

2.
Hormozgan Province with arid climate is an important source of energy resources for Iran. This study investigates the results of hydrogeochemical investigation and its tectonic control in Hormozgan Province, Southern Iran. The chemical analysis of 158 groundwater samples was evaluated to determine the hydrogeochemical processes and ion concentration background in the region. Several NW-SE trending and NE-dipping basement reverse faults have intersected the area and have divided it into four tectonic terranes. Huge extension of Hormuz Formation in Zagros Foredeep tectonic terrane has increased the cations, Cl and SO4 concentration in groundwaters. HCO3 concentration in Sanandaj-Sirjan Zone and High Zagros is the result of silicate weathering or carbonates. Eighty-three percent of samples have negative CAI values in High Zagros, Sanandaj-Sirjan Zone, and eastern Zagros Fold Thrust Belt. The dominant hydrochemical facies of groundwater are Na-Mg-Ca-Cl (25.3% of samples) and Na-Mg-Cl (20.9% of samples). They are confined to the west of Main Zagros Reverse Fault and east of High Zagros Fault, respectively. The salt content of the groundwater indicates samples with very high salinity—as a result of Hormuz Formation—are mainly limited to the west of High Zagros Fault while samples with high to medium salinity are mainly limited to the east of this fault. Eastward increment of rock weathering is controlled with thrust faults activity of the area and southwestward migration of deformation front. Westward increment of evaporites is compatible with Hormuz Formation/salt dome density through the area.  相似文献   

3.
东昆仑断裂带西大滩段全新世古地震研究*   总被引:2,自引:5,他引:2  
对东昆仑断裂带西大滩段进行了断错地貌填图和古地震探槽揭露,共揭露出6次古地震事件,它们的年龄分别为10302±651aB.P. , 8650±500aB.P. , 7160±506aB.P. , 2830±170aB.P. , 1985±121aB.P.和1540±92aB.P. ;古地震重复间隔分别为1652±820a,1490±711a,4330±534a,845±209a和445±152a。研究发现,西大滩段全新世古地震活动具有丛集现象和重复间隔时间的分段性,第1丛集期在10300~7100aB.P.期间,平均重复间隔1571±543a,第2丛集期在2800~1500aB.P.期间,重复间隔400~800a左右,平均重复间隔645±129a,两个丛集期间隔4300a。西大滩段全新世地震活动规律对昆仑山地区未来地震危险性评估具有重要意义。  相似文献   

4.
基于详细的遥感解译和野外调查,发现龙首山南缘断裂发育有较新的地震地表破裂遗迹,包括断层坎、地震鼓包、河道的系统位错等断层地貌标志,破裂带总长度超过20 km,沿断裂走向其垂向位移介于0.35~4 m,水平位移介于0.3~1.9 m,龙首山南缘断裂主体表现为逆冲性质,仅在西端表现为局部左旋走滑的性质。通过剖面和探槽揭示,龙首山南麓地区全新世以来发生多次断层活动,最新的一次在约3.96 ka以来。经过与区域内的强震记录比对,认为此次新发现的地震地表破裂带可能是1954年山丹MS 7地震所致。1954年山丹MS 7地震在浅表沿两条断裂同时发生了地表破裂,表现为正花状构造的变形样式。这种同震位移分配现象以往多发现于走滑型地震中,此次在逆冲型地震中发现。龙首山南缘断裂地表破裂带的发现为揭示1954年山丹地震的震源过程和破裂样式提供了新的证据和思路。  相似文献   

5.
A seismic source model is developed for the entire Arabian Plate, which has been affected by a number of earthquakes in the past and in recent times. Delineation and characterization of the sources responsible for these seismic activities are crucial inputs for any seismic hazard study. Available earthquake data and installation of local seismic networks in most of the Arabian Plate countries made it feasible to delineate the seismic sources that have a hazardous potential on the region. Boundaries of the seismic zones are essentially identified based upon the seismicity, available data on active faults and their potential to generate effective earthquakes, prevailing focal mechanism, available geophysical maps, and the volcanic activity in the Arabian Shield. Variations in the characteristics given by the above datasets provide the bases for delineating individual seismic zones. The present model consists of 57 seismic zones extending along the Makran Subduction Zone, Zagros Fold-Thrust Belt, Eastern Anatolian Fault, Aqaba-Dead Sea Fault, Red Sea, Gulf of Aden, Owen Fracture Zone, Arabian Intraplate, and a background seismic zone, which models the floating seismicity that is unrelated to any of the distinctly identified seismic zones. The features of the newly developed model make the seismic hazard results likely be more realistic.  相似文献   

6.
沂沭断裂带纵贯山东省中部,属郯庐断裂带中段。在沂沭断裂带及其近区新元古代—新生代的沉积地层中,到目前,已识别出25个地震事件层位。这些地震事件层位的名称取自不同年代或年龄的含地震记录的岩石地层。大多数地震记录是震积岩,少部分为震火山岩,它们的时空分布支持该断裂带生成—活动与发展历史分2个阶段: 古郯庐断裂带阶段(新元古代—古生代)和中—新生代阶段。新元古代初鲁中至苏皖北部NNE向韧性剪切带的形成,沟通了秦岭大别与苏鲁洋间的NEE走向的转换断层,可能是沂沭断裂带或古郯庐断裂带的成因机制。在纵向上,古郯庐断裂带阶段形成了8个地震事件层位,其中5个地震事件层位较密集地分布于南华系至中下寒武统;中—新生代阶段形成了17个地震事件层位,其中12个层位较密集的分布于白垩系—古近系。因此,南华纪—早中寒武世、白垩纪—古近纪分别为2个发展阶段的强地震事件频繁发生时段。在这2个发展阶段,该断裂带地震活动的动力来源不同: 古郯庐断裂带阶段主要源于华北与华南板块的相向运动与碰撞;中—新生代阶段主要源于太平洋板块向欧亚大陆板块下俯冲。在横向上,有15个(占60%)地震事件层位分布在此断裂带内或由该断裂带内向两侧延伸,这体现了沂沭断裂带一直是研究区内发震构造的主体。所有地震事件地层分布于该断裂带纵中轴线两侧150~180,km以内的同沉积盆地,这证明该深大断裂带的两侧近区是强构造地震活动区。作者关于地震事件层位的时空分布的论述和图解,展示了该断裂带自形成以来的地震作用的过程与历史,清晰地勾绘出了这条长期活动地震带的影响范围,这不仅对分析此类深大活动断裂带及其附近由地震引发的软沉积物变形与地震作用具有重要意义,而且对评价此类地震带对地表和建筑物的地震破坏效应也具有重要意义。  相似文献   

7.
On 4 May 1910, the most destructive earthquake in the history of Costa Rica (Ms 6.4) destroyed the city of Cartago, a major city located in the Valle Central of Costa Rica. Using both palaeo‐seismological and morphotectonic analyses, we have found evidence that points to the Aguacaliente Fault (AF) as the source of this earthquake. This structure is a N100° E trending, strike‐slip fault situated to the south of Cartago and within a wide band of deformation. We excavated two trenches near Bermejo, south of Cartago. We found evidence of three surface ruptures within the last 1000 years on this fault. The age of the most recent rupture is consistent with the Cartago 1910 earthquake. The AF is a seismogenic source capable of producing large earthquakes (Mw 6.5–6.9) with an estimated recurrence interval of about 500 years.  相似文献   

8.
东昆仑断裂带库赛湖段晚第四纪古地震研究*   总被引:5,自引:1,他引:5  
对东昆仑断裂带库赛湖段进行了断错地貌填图和古地震探槽揭露研究。除2001年昆仑山口西8.1级地震外,共揭露出9次古地震事件,它们的年龄分别为31900±1923aB.P. , 27990±1681aB.P. , 23635±1427aB.P. , 20345±1225aB.P. , 16865±1018aB.P. , 12935±774aB.P. , 9730±592aB.P. , 6955±425aB.P.和3100±201aB.P.;古地震重复间隔分别为3910±2554a,4355±2205a,3290±1881a,3480±1593a,3930±1279a,3205±975a,2775±728a,3855±470a和3100±201a。研究结果表明,库赛湖段晚第四纪古地震活动具有准周期性,其平均重复间隔为3544±416a。发生在距今3100年前的倒数第1次古地震事件的离逝时间与重复间隔非常接近,这意味着2001年11月14日发生在库赛湖段的8.1级大地震为该断裂地震活动在准周期上的再现。高的滑动速率和长周期复发间隔表明库赛湖段活动习性以重复发生大地震为特征。  相似文献   

9.
The results of seismotectonic study of the epicentral zone of the major earthquake in northern Kamchatka oblast are presented. Primary and secondary surface seismic dislocations were revealed. The exposed seismic source as a complex system of seismic faults up to 140 km in total length was found and mapped in detail. The system consists of three en echelon arranged NE-oriented segments about 16, 45, and 75 km long. The general strike of the fault system coincides with the orientation of the ridges in the Koryak Highland. The kinematics of the longest northeastern segment is reverse faulting of the southeastern wall combined with right-lateral strike-slip faulting. The maximum vertical and horizontal separations are 3 and 1.5 m, respectively. Vibration fractures, griffons, landslides, and rockfalls were revealed and documented as secondary seismic dislocations. The indications of paleoseismic dislocations were studied and documented as well. The age of paleoseismic events was determined with radiocarbon method from soil samples. The seismic source is confined to the boundary of the North American and Bering Sea lithospheric plates and exhibits its internal structure for a long distance. Seismic events testify to recent geological activity of the zone of interaction between the lithospheric plates. The collected data provide insights into the structure of the seismic source and its tectonic setting at the active continental margin of Asia.  相似文献   

10.
The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh–Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X–X′, T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment (M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.  相似文献   

11.
We have identified a 50-km-long active fault scarp, called herewith the Lourdes Fault, between the city of Lourdes and Arette village in the French Pyrénées. This region was affected by large and moderate earthquakes in 1660 (Io = VIII–IX, MSK 64,), in 1750 (Io = VIII, MSK 64) and in 1967 (Md = 5.3, Io = VIII, MSK 64). Most earthquakes in this area are shallow and the few available focal mechanism solutions do not indicate a consistent pattern of active deformation. Field investigations in active tectonics indicate an East–West trending and up to 50-m-high fault scarp, in average, made of 3 contiguous linear fault sub-segments. To the north, the fault controls Quaternary basins and shows uplifted and tilted alluvial terraces. Deviated and abandoned stream channels of the southern block are likely due to the successive uplift of the northern block of the fault. Paleoseismic investigations coupled with geomorphic studies, georadar prospecting and trenching along the fault scarp illustrate the cumulative fault movements during the late Holocene. Trenches exhibit shear contacts with flexural slip faulting and thrust ruptures showing deformed alluvial units in buried channels. 14C dating of alluvial and colluvial units indicates a consistent age bracket from two different trenches and shows that the most recent fault movements occurred between 4221 BC and 2918 BC. Fault parameters and paleoseismic results imply that the Lourdes Fault and related sub-segments may produce a MW 6.5 to 7.1 earthquake. Fault parameters imply that the Lourdes Fault segment corresponds to a major seismic source in the western Pyrénées that may generate earthquakes possibly larger than the 1660 historical event.  相似文献   

12.
The Yenice–Gönen Fault (YGF) is one of the most important active tectonic structures in the Biga peninsula. On March 18, 1953, a destructive earthquake (Mw = 7.2) occurred on the YGF, which is considered to be a part of the southern branch of the North Anatolian Fault Zone (NAFZ). A 70 km-long dextral surface rupture formed during the Yenice–Gönen Earthquake (YGE).In this study, structural and palaeoseismological features of the YGF have been investigated. The YGF surface ruptures have been mapped and three trenches were excavated at Muratlar, Karaköy and Seyvan sites.According to the palaeoseismic interpretation and the results of 14C AMS dating, Seyvan trench shows that an earthquake of palaeoseismic age ca. 620 AD ruptured a different strand of the 1953 fault, producing rather significant surface rupture displacement, while there are indications that at least two older events occurred during the past millennia. Another set of trenches excavated near Gönen town (Muratlar village) revealed extensive liquefaction not only during the 1953 event, but also during a previous earthquake, dated at 1440 AD. The Karaköy trench shows no indications of recent reactivations.Based on the trenching results, we estimate a recurrence interval of 660 ± 160 years for large morphogenic earthquakes, creating linear surface ruptures. The maximum reported displacement during the 1953 earthquake was 4.2 m. Taking into account the palaeoseismologically determined earthquake recurrence interval and maximum displacement, slip-rate of the YGF has been calculated to be 6.3 mm/a, which is consistent with present-day velocities determined by GPS measurements. According to the geological investigations, cumulative displacement of the YGF is 2.3 km. This palaeoseismological study contributes to model the behaviour of large seismogenic faults in the Biga Peninsula.  相似文献   

13.
The Main Recent Fault of the Zagros Orogen is an active major dextral strike-slip fault along the Zagros collision zone, generated by oblique continent–continent collision of the Arabian plate with Iranian micro-continent. Two different fault styles are observed along the Piranshahr fault segment of the Main Recent Fault in NW Iran. The first style is a SW-dipping oblique reverse fault with dextral strike-slip displacement and the second style consists of cross-cutting NE-dipping, oblique normal fault dipping to the NE with the same dextral strike-slip displacement. A fault propagation anticline is generated SW of the oblique reverse fault. An active pull-apart basin has been produced to the NE of the Piranshahr oblique normal fault and is associated with other sub-parallel NE-dipping normal faults cutting the reverse oblique fault. Another cross-cutting set of NE–SW trending normal faults are also exist in the pull-apart area. We conclude that the NE verging major dextral oblique reverse fault initiated as a SW verging thrust system due to dextral transpression tectonic of the Zagros collision zone and later it has been overprinted by the NE-dipping oblique normal fault producing dextral strike-slip displacement reflecting progressive change of transpression into transtension in the collision zone. The active Piranshahr pull-apart basin has been generated due to a releasing damage zone along the NW segment of the Main Recent Fault in this area at an overlap of Piranshahr oblique normal fault segment of the Main Recent Fault and the Serow fault, the continuation of the Main Recent Fault to the N.  相似文献   

14.
2008年5月12日在青藏高原东缘龙门山断裂带中段发生汶川8.0级特大地震。大震发生时释放应力并对震源区及外围构造应力场产生影响,受汶川地震断层破裂方式和强度空间差异性的影响,震后龙门山断裂带地壳应力场也应表现差异特征,至今鲜有针对该科学问题深入的分析和讨论。经过系统收集、梳理汶川地震后沿龙门山断裂带水压致裂地应力测量数据与2008年汶川地震中强余震序列震源机制解资料,对汶川地震后龙门山断裂带中上地壳构造应力场进行厘定,通过与震前构造应力场对比,深入探讨了汶川8.0级地震对龙门山断裂带地壳应力场的影响,进而对汶川震后应力调整过程及青藏高原东缘龙门山地区深部构造变形模式进行研究,研究结果表明:受汶川8.0级地震的影响,震后龙门山断裂带地壳构造应力场空间分布具有差异性,近地表至上地壳15 km深度范围,映秀—青川段最大主应力方向为北西西向、地应力状态为逆走滑型,青川东北部最大主应力方向偏转至北东东向、应力状态转变为走滑型;15~25km深度范围,龙门山断裂带最大主应力方向仍为北西—北西西向、应力状态以逆冲型为主。汶川8.0级地震后,龙门山断裂带中地壳北西西向逆冲挤压的构造应力特征进一步支持了青藏高原东缘龙门山地区东西两侧刚性块体碰撞挤压、逆冲推覆的动力学模式。  相似文献   

15.
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.  相似文献   

16.
李志刚  刘静  贾东  孙闯  王伟  姚文倩 《地质通报》2016,35(11):1829-1844
2008年汶川地震(Mw 7.9)同震滑移结果表明,今地壳缩短为近EW向,与龙门山褶皱冲断带斜交。这一斜向逆冲作用的准确起始时间一直未得到很好的约束。基于龙门山南段山前大邑背斜区三维地震解释和构造建模,结合野外地质调查和年代学数据,确定了晚新生代存在NE向和近NS向2期构造变形。120km长的NS向构造切割了NE向构造,表明近NS向构造形成时间较晚。山前大邑和邛西背斜区近NS向断层和褶皱的活动,均反映了龙门山南段局部或区域上水平最大主应力方向的转换过程,渐新世—早上新世的NW—SE向转变为晚上新世—全新世的近EW向。龙门山南段山前发育的NS向构造和汶川地震同震变形均反映出青藏高原东缘最新的EW向地壳缩短过程,为理解青藏高原东缘的隆升机制提供了新的视角。  相似文献   

17.
In Sweden, knowledge of the location and timing of glacially induced faulting and seismicity is critical to effective engineering of a long-term nuclear disposal facility. To improve understanding and modeling of the complex ice-induced and tectonic stresses associated with glacially induced faulting, field studies detailing the location and timing of movement of such structures are required. Although the fault has not been confirmed in the bedrock, multi-proxy surficial geologic evidence indicates that the recently discovered scarp in Bollnäs is such a structure. Machine-excavated trenches across the scarp reveal landsliding down the scarp and, in one location, faulted and vertically offset fine-grained glacial sediments. The presence of water-escape structures in trenches excavated on a topographic high strongly suggests a co-seismic origin derived from earthquake magnitudes >5.5. Numerous landslides in till exist in the region as well. Four slopes with landslides were examined in detail, and the factors of safety for these slopes indicate stable conditions and suggest a seismic trigger. Basal radiocarbon dates from peat bogs located stratigraphically above the landslides provide minimum limiting ages for the co-seismic landslides. The oldest date indicates sliding prior to 10,180 calendar years before the present. The proposed Bollnäs Fault is 400 km south of the so called Lapland Fault Province. To date, it is the southernmost confirmed glacially induced fault in Sweden. The results of this study are consistent with existing modeling results that indicate fault instability in this region of central Sweden following deglaciation.  相似文献   

18.
The frequency–magnitude distributions of earthquakes are used in this study to estimate the earthquake hazard parameters for individual earthquake source zones within the Mainland Southeast Asia. For this purpose, 13 earthquake source zones are newly defined based on the most recent geological, tectonic, and seismicity data. A homogeneous and complete seismicity database covering the period from 1964 to 2010 is prepared for this region and then used for the estimation of the constants, a and b, of the frequency–magnitude distributions. These constants are then applied to evaluate the most probable largest magnitude, the mean return period, and the probability of earthquake of different magnitudes in different time spans. The results clearly show that zones A, B, and E have the high probability for the earthquake occurrence comparing with the other seismic zones. All seismic source zones have 100 % probability that the earthquake with magnitude ≤6.0 generates in the next 25 years. For the Sagaing Fault Zone (zones C), the next Mw 7.2–7.5 earthquake may generate in this zone within the next two decades and should be aware of the prospective Mw 8.0 earthquake. Meanwhile, in Sumatra-Andaman Interplate (zone A), an earthquake with a magnitude of Mw 9.0 can possibly occur in every 50 years. Since an earthquake of magnitude Mw 9.0 was recorded in this region in 2004, there is a possibility of another Mw 9.0 earthquake within the next 50 years.  相似文献   

19.
鲜水河断裂带色拉哈段是2014年康定MS6.3地震的发震断裂段,其最新一次地表破裂事件(1725年康定7级地震)的离逝时间较长,是最可能发生7级以上地表破裂型大震的危险地段之一。获得色拉哈段最新地震地表破裂的展布范围对确定断裂带的地震活动历史、评估断裂带的未来地震危险性以及防震减灾具有重要意义。然而,迄今色拉哈段最新地表破裂的北西端位置仍存有较大争议。对此,在以往资料认为没有同震地表破裂的中谷村一带开挖了探槽组,获得了这一带的破裂历史,其最新一次事件(E6)的限定年代为A.D.746±51之后。综合探槽剖面证据和附近的断错地貌特征以及历史地震资料,探槽揭露的最新事件E6可能对应1725年康定7级地震,色拉哈段的地表破裂北西端至少已延伸到中谷村一带。  相似文献   

20.
汶川M_s 8.0级地震地表破裂带近断层水平缩短量研究   总被引:1,自引:0,他引:1  
2008年5月12日四川汶川发生Ms8.0特大地震后,地表同震位移量已有了大量的详细调查和研究,然而对于近断层同震水平缩短量的研究却相对较少。笔者在中央断裂、前山断裂以及北西向分支断裂上选择合适地点进行大量探槽开挖,获得了近断层同震水平缩短量的分布情况为:中央断裂清平镇(2.8 m)、擂鼓镇(3.2 m)、平通镇(1.3 m),前山断裂白鹿镇(2.5 m)、九龙镇(1.4 m)、汉旺镇(0.6 m)。文中进一步在中央断裂和小鱼洞分支断裂地表破裂带上开挖数个探槽研究其近断层水平缩短量的问题,得到结果如下:龙门山中央断裂带映秀镇、擂鼓镇、平通镇探槽近断层水平缩短量分别约为(2.6±0.1)m、(2.6±0.2)m、(1.8±0.1)m;小鱼洞分支断层近断层水平缩短量约为(2±0.1)m。汶川5.12地震中央断裂地表破裂近断层较大水平缩短量出现在深溪沟和擂鼓一带,分别约为3.4 m、3.2 m;前山断裂地表破裂带近断层水平缩短量最大值出现在白鹿一带,约为2.5 m,白鹿以北,近断层水平缩短量逐渐减小。中央断裂和前山断裂联合破裂段水平缩短量值之和大于中央断裂带其两侧段落,最大水平缩短量总和可能约为5.3 m,地表破裂带近断层水平缩短量为整个地壳缩短量的主体部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号