首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A panel-free method (PFM), based on the desingularized Green’s formulae proposed by Landweber and Macagno, has been developed to solve the radiation problem of a floating body in the time domain. The velocity potential due to a non-impulsive velocity is obtained by solving the boundary integral equation in terms of source strength distribution. The singularity in the Rankine source term of the time-dependent Green function is removed. The geometry of a body surface is mathematically represented by NURBS surfaces. The integral equation can be globally discretized over the body surface by Gaussian quadratures. No assumption is needed for certain degree of approximation of distributed source strength on the body surface. The accuracy of PFM was demonstrated by its application to a classical problem of uniform flow past a sphere. The response function of a hemisphere at zero speed was then computed by PFM. The computed response function, added-mass and damping coefficients are compared with other published results.  相似文献   

2.
章旭  勾莹  倪云林  滕斌  刘珍 《海洋学报》2016,38(1):133-142
基于线性势流理论,利用高阶边界元法研究了规则波在三维局部渗透海床上的传播。根据Darcy渗透定律推导出渗透海床的控制方程,利用渗透海床顶部和海底处法向速度和压强连续条件得到渗透海床顶部满足的边界条件。根据绕射理论,利用满足自由水面条件的格林函数建立了求解渗透海床绕射势的边界积分方程,采用高阶边界元方法求解边界积分方程进而得到自由水面的绕射势和波浪在局部渗透海床上传播过程中幅值的变化情况。通过与已发表的波浪对圆柱形暗礁的时域全绕射结果对比,证明了本文建立的频域方法计算波幅的正确性和有效性。利用这一模型研究了三维矩形渗透海床区域上波浪的传播特性,并分析了入射波波长、海床渗透特性系数等参数对波浪传播的影响。  相似文献   

3.
Numerical solutions for the hydroelastic problems of bodies are studied directly in the time domain using Neumann–Kelvin formulation. In the hydrodynamic part of problem, the exact initial boundary value problem is linearized using the free stream as a basis flow, replaced by the boundary integral equation applying Green theorem over the transient free surface Green function. The resultant boundary integral equation is discretized using quadrilateral elements over which the value of the potential is assumed to be constant and solved using the trapezoidal rule to integrate the memory or convolution part in time. In the structure part of the problem, the finite element method is used to solve the hydroelastic problem. The Mindlin plate as a bending element, which includes transverse shear effect and rotary inertia effect are used. The present numerical results show acceptable agreement with experimental, analytical, and other published numerical results.  相似文献   

4.
The system of equations of motion describing the gravity wave propagation in a perfect heavy liquid layer is transformed into a new integral equation for the free surface elevations. In the limit cases, this integral equation describes the linear and nonlinear periodic waves as well as the known types of solitary waves. In this case a dispersion equation arises because perturbations of the second and higher orders of smallness are neglected. The integral equation allows for the propagation of invariable surface perturbations of arbitrary forms if their spatial spectrum is concentrated near small wave numbers (compared to the inverse wave amplitude). Several examples of solutions are presented.  相似文献   

5.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

6.
A modified source-and-dipole type singularity panel method is proposed to calculate the flow properties for an oscillating arbitrary body in the presence of a free surface. The technique is based on Green's identity whereby the boundary value problem is expressed as a boundary integral equation which is solved numerically. The free-space Green function is used in the integral equation. To demonstrate the feasibility of the method, the problem of a pulsating submerged line source under a free surface is treated and results are compared with the exact solution.An excellent agreement with the theory is obtained for panel density of about ten panels per wavelength and paneled water surface length of two wavelengths with very low computing times, indicating the feasibility of the method for unsteady water wave problems.  相似文献   

7.
利用完全非线性数值波浪水槽技术研究水下平板与波浪的相互作用。假定水下平板厚度极薄、刚性,位于有限水深并且非常接近自由水面。应用四阶龙格库塔方法追踪每一时刻的波面形状,采用阻尼层来吸收反射波以保证算法的稳定性,同时引入平滑和重组的方法抑制自由表面控制点的较高梯度。通过对波浪与浮动圆柱相互作用的数值模拟证实了数值波浪水槽方法的有效性,计算结果与线性理论吻合良好。在波浪数值水槽方法中引入造波板模拟波浪产生并与水下平板发生相互作用,应用傅立叶解析方法对波面变形、波浪力作了分析。结果表明在板非常接近自由水面的情况下会表现出现很强的非线性,揭示了线性理论的局限性。  相似文献   

8.
波浪作用下方箱-水平板浮式防波堤时域水动力分析   总被引:1,自引:0,他引:1  
在线性化势流理论范围内求解方箱-水平板浮式防波堤的波浪绕射和辐射问题,从时域角度分析了浮式防波堤的水动力特性.采用格林函数法将速度势定解问题的控制微分方程变换成边界上的积分方程进行数值求解,浮式防波堤的运动方程采用四阶Runge-Kutta方法求解.对不同层数水平板的浮式防波堤的波浪透射系数、运动响应和锚链受力进行了计算分析,结果表明方箱相对宽度对方箱-水平板浮式防波堤的波浪透射作用有重要的影响,透射系数随着方箱相对宽度的增加而减小.对于方箱加二层水平板的浮式防波堤,在本研究的计算条件下,当方箱相对宽度从0.110增加至0.295时,透射系数从0.88减小至0.30.水平板有利于增加浮式防波堤对波浪的衰减作用,但随着水平板层数从0增加至2,这种波浪衰减作用增加的程度趋弱.方箱-水平板的浮式防波堤的运动量小于单一方箱防波堤的运动量.与此对应,方箱-水平板防波堤的锚链受力小于单一方箱防波堤的锚链受力.  相似文献   

9.
1 .IntroductionApile supportedplatesubmergedatacertaindepthunderseasurfacewasdevelopedasanewtypeofunderwaterbreakwaterfortheprotectionofcoastlinesandharbors .Thisisbecauseitdoesnothinderthewaterexchangebetweentheopenseaandtheprotectedareanordoesithindertheviewovertheopensea .Besides,itislessdependentonthegeotechnicalconditionsoftheseabottomwherethestructureistobeinstalled ;however,itscostishigh ,particularlyinrelativelydeepwaters .Formanyapplicationsitispossibletoreducethewavemotionintheprotec…  相似文献   

10.
The boundary integral element method based on Green's formula is applied to the analysis of transient flow problem in corrugated bottom tanks. The problem is formulated as a two-dimensional linear, initial boundary value problem in terms of a velocity potential. The Laplace equation and the boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by the application of Green's formula. Finite Difference discretization is applied timewise. Initially a triangular wave on the free surface is assumed to be formed. The height of the triangular corrugated bottom is varied between 1/10 and 1/5 of the tank depth. The form of the free surface and the equipotential lines for the flow in the tank are presented at different time steps. An accuracy analysis is performed and distortion in time is considered. Proper coefficients for solutions are derived and presented. The results show that utilization of triangular corrugated bottoms may help to regulate the flow in tanks.  相似文献   

11.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

12.
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

13.
Green functions with pulsating sources in a two-layer fluid of finite depth   总被引:1,自引:0,他引:1  
The derivation of Green function in a two-layer fluid model has been treated in different ways.In a two-layer fluid with the upper layer having a free surface,there exist two modes of waves propagating due to the free surface and the interface.This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating.The source point is located either in the upper or lower part of a two-layer fluid of finite depth.The derivation is carried out by the method of singularities.This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present.Furthermore,experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results.Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower,for each case.The effect of the density on the internal waves is demonstrated.Also,it is shown how the surface and internal wave amplitudes are compared for both the wave modes.The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.  相似文献   

14.
《Ocean Engineering》1999,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

15.
The motion and the drift force of a floating OWC (oscillating water column) wave energy device in regular waves are studied taking account of the oscillating surface-pressure due to the pressure drop across the duct of the air chamber. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine-type Green function while the outer problem with the Kelvin-type Green function. The added mass, wave damping and excitation coefficients as well as the motion and drift force of the OWC device are calculated for various values of parameter related to the pressure drop.  相似文献   

16.
Pradip Deb Roy  Sukamal Ghosh   《Ocean Engineering》2006,33(14-15):1935-1953
The paper presented is a solution of shallow water wave force, using small amplitude linear wave theory on two-dimensional vertically submerged circular thin plates under three different configurations: (1) a surface-piercing circular thin plate, (2) a submerged circular thin plate, and (3) a bottom-standing circular thin plate. Finally Morison's equation is used for the determination of wave force which is based on the linear wave theory. The plate is submerged in water near the shore on uniformly sloping bottom. The solution method is confined in a finite domain, which contains both the region of different depth of water and the plate. Laplace's equation and boundary value problems are solved in a finite domain, by the method of separation of variables and the small amplitude linear wave theory. The variation of horizontal force by single particle, total horizontal force and moment with respect to the wave amplitude are obtained at different depth of water and at different wave period. It is observed that the force and moment are converging with the increase of wave period and the gradients of force and moment with respect to the wave amplitude are extremely high for lower wave period.  相似文献   

17.
The linear three-dimensional problem of ice loads acting on a vertical circular cylinder frozen in an ice cover of infinite extent is studied. The loads are caused by an uni-directional hydroelastic wave propagating in the ice cover towards the cylinder mounted to the see bottom in water of constant depth. There are no open water surfaces in this problem. The deflection of the ice cover is described by the Bernoulli–Euler equation of a thin elastic plate of constant thickness. At the contact line between the ice cover and the surface of the cylinder, some edge conditions are imposed. In this study, the edge of the ice plate is either clamped to the cylinder or has no contact with the cylinder surface, with the plate edge being free of stresses and shear forces. The water is of finite constant depth, inviscid and incompressible. The problem is solved by both the vertical mode method and using the Weber integral transform in the radial coordinate. Each vertical mode corresponds to a root of the dispersion relation for flexural-gravity waves. It is proved that these two solutions are identical for the clamped edge conditions. This result is non-trivial because the vertical modes are non-orthogonal in a standard sense, they are linearly dependent, the roots of the dispersion relation can be double and even triple, and the set of the modes could be incomplete. A general solution of the wave-cylinder interaction problem is derived by the method of vertical modes and applied to different edge conditions on the contact line. There are three conditions of solvability in this problem. It is shown that these conditions are satisfied for any parameters of the problem.  相似文献   

18.
给出了一种联合瞬态格林函数和Rankine源进行有航速浮体时域水动力分析的混合——边界元方法。在三维混合边界元方法中,通过一个匹配面将流体域划分为内域和外域,在内域中使用Rankine源以模拟直壁或非直壁船体及线性或非线性自由面条件,在外域中使用瞬态格林函数以满足自由面条件和远方辐射条件。使用该方法计算了一个有航速潜没圆球的波浪力,和解析结果的比较证明了该方法的正确性。进一步给出了一个有航速Wigley船的水动力结果,计算结果稳定,没有外传波向内反射的现象发生。  相似文献   

19.
A study of nonlinear heave radiation of two-dimensional single and double hulls has been carried out in the time domain. The problem is analyzed by means of a fully nonlinear mathematical model, referred to as the mixed Eulerian–Lagrangian (MEL) model, which is based on an integral relation formulation coupled with time-integration of the nonlinear free-surface boundary conditions. The integral equation solver is based on a cubic-spline boundary-element scheme in which both potential and velocity continuity conditions can be enforced through the intersection points. The body undergoes periodic forced heave oscillation. By implementing effective wave-absorbing beaches at the two ends of the rectangular numerical tank, long-term steady-state force-histories could be achieved consistently in all computations.Results in terms of radiation forces for rectangular and triangular single- and twin-hull geometries are presented and discussed. Linear hydrodynamic forces in terms of added-mass and damping are validated for the rectangular hull. The Fourier-analyzed results reveal the extent of nonlinear (higher-order) components in the force-signals over different parameters which include the amplitudes of oscillation, hull-spacing for the twin-hulls and water depth.  相似文献   

20.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号