首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear resonant interactions of different kinds of fast magnetosonic (FMS) waves trapped in the inhomogeneity of a low- plasma density, stretched along a magnetic field (as, for example, in coronal loops) are investigated. A set of equations describing the amplitudes of interactive modes is derived for an arbitrary density profile. The quantitative characteristics of such interactions are found. The decay instability of the wave with highest frequency is possible in the system. If amplitudes of interactive modes have close values, the long-period temporal and spatial oscillations are in the system.For a quantitative illustration, the parabolic approximation of the transverse density profile has been chosen. Dispersion relations of FMS waves trapped in a low- plasma slab with a parabolic transverse density profile are found. The transverse structure of the waves in this case can be expressed through Hermitian polynomials. The interaction of kink and sausage waves is investigated. The sausage wave, with a sufficiently large amplitude, may be unstable with respect to the decay into two kink waves, in particular. The spatial scale of a standing wave structure and the time spectrum of radiation are formed due to the nonlinear interactions of loop modes which contain information about the parameters of the plasma slab.  相似文献   

2.
Twisted magnetic flux tubes are often used to model the filed in coronal loops, and much attention has been given to analysing their stability. Previous astrophysical studies have concentrated on establishing the existence of an instability or determining stability bounds, and little information seems available on the associated eigenvalues, which give crucial information on the energy released. This paper develops methods of determining eigenvalues for infinitely long flux tubes. The most striking feature of the results is that the eigenvalues are always small-of order 10–2 (in dimensionless units) even for the fastest helical kink modes (m=1). The more localized higher-m modes have even smaller eigenvalues. A family of flux tubes with field line twist proportional tor is investigated, and it appears that the most energetic instabilities occur in the Gold-Hoyle tube with uniform twist (=0). Implications of these results are discussed.  相似文献   

3.
K. Petrovay 《Solar physics》1991,134(2):407-410
We consider a hypothesis that nondissipating wave-bound beam structures may be created in plasma due to interaction between energetic charged particles and undamped Van Kampen (1955) waves. This hypothesis, if correct, might account for several phenomena observed in the Sun. For instance, on entering the atmosphere and then decaying, the structures may lead to flares. Furthermore, the idea offers propitious prospects of solving the well-known problem of the solar neutrino deficit. In addition, a relation between phenomena occuring within the Sun's core and those on its surface becomes possible.  相似文献   

4.
B. C. Low 《Solar physics》1980,67(1):57-77
A method is prescribed for generating exact solutions of magnetostatic equilibrium describing a cylindrically symmetric magnetic flux tube oriented vertically in a stratified medium. Given the geometric shape of the field lines, compact formulae are presented for the direct calculation of all the possible distributions of pressure, density, temperature and magnetic field strength compatible with these field lines under the condition of static equlibrium. The plasma satisfies the ideal gas law and gravity is uniform in space. A particular solution is obtained by this method for a medium sized sunspot whose magnetic field obeys the similarity law of Schlüter and Temesváry (1958). With this solution, it is possible for the first time to illustrate explicitly the confinement of the magnetic field of the cool sunspot by the hotter external plasma in an exact relationship involving both magnetic pressure and field tension as well as the support of the weight of the plasma by pressure gradients. It is found that the cool region of the sunspot is not likely to extend much more than a few density scale heights below the photosphere. The sunspot field approaches being potential in the neighbourhood of the photosphere so that the Lorentz force exerting on the photosphere is less than what the magnetic pressure would suggest. This accounts for how the sunspot field can be confined in the photosphere where its magnetic pressure is often observed to even exceed the normal photospheric pressure. The energy mechanism operating in the sunspot and the question of mechanical stability are not treated in this paper.Normally at Lau Kuei Huat (Singapore) Private Limited, 55 Shipyard Road, Singapore 22, Singapore.  相似文献   

5.
Some recent observations at Pic-du-Midi (Mulleret al., 1992a) suggest that the photospheric footpoints of coronal magnetic field lines occasionally move rapidly with typical velocities of the order 3 km s–1 for about 3 or 4 min. We argue that such occasional rapid footpoint motions could have a profound impact on the heating of the quiet corona. Qualitative estimates indicate that these occasional rapid motions can account for the entire energy flux needed to heat the quiet corona. We therefore carry out a mathematical analysis to study in detail the response of a vertical thin flux tube to photospheric footpoint motions in terms of a superposition of linear kink modes for an isothermal atmosphere. We find the resulting total energy that is asymptotically injected into an isothermal atmosphere (i.e., an atmosphere without any back reflection). By using typical parameter values for fast and slow footpoint motions, we show that, even if the footpoints spend only 2.5% of the time undergoing rapid motions, still these rapid motions could be more efficient in transporting energy to the corona than the slow motions that take place most of the time.  相似文献   

6.
In this paper we extend previous work of Browning and Priest (1984, 1986) by studying the equilibrium path of twisted and untwisted thin flux tubes in a stratified, isothermal atmosphere using as the ambient field a linear force-free field. When an untwisted flux tube is considered, we find that shearing the magnetic arcade provides a different form to change the parameter which characterizes the external atmosphere, but at the same time this introduces a limitation in the width allowed for the external arcade. Also, the critical width found for the different analytical cases considered is always greater than one arch of the ambient arcade which prevents an eruption inside the arcade. In the case of twisted flux tubes, an analytical solution can be found for the critical c , which separates regimes of strong and weak gravity, and the shape of the flux tube is now dependent on , a parameter which represents the magnetic field enhancement of the loop at the photosphere.  相似文献   

7.
The relative populations of levels of highly ionized Fe, Ni and Ca ions have been calculated for physical conditions appropriate to the solar corona. The results are presented in the form of tables. Line intensity ratios in the EUV and visible that are sensitive to electron density are discussed and compared with observations.  相似文献   

8.
F. Ali  A.D. Sneyd 《Solar physics》2002,205(2):279-301
This paper investigates nonlinear interaction ofmagnetic flux tubes, as a possible cause of current-sheet formation. We focus attention on Gold–Hoyle tubes because of their simple analytic form, using a frictional magnetic relaxation code to find eventual equilibria. We assume that all fields possess helical symmetry so the problem becomes essentially two-dimensional and high resolution can be more easily achieved. When the tubes are not twisted together current sheets form only if the plasma pressure is zero. Twisting the tubes when the plasma pressure is small but finite results in curved current sheets and line currents. Current singularities are identified by performing calculations at increasing grid resolutions, and observing a regular increase in the maximum current.  相似文献   

9.
Zhang  Jun  Wang  Jingxiu 《Solar physics》1999,188(1):59-72
We have investigated the influence of stationary velocity fields, twists of the field lines and changes of gas pressure within flux tubes on the interchange instability of magnetic flux tubes. A small flux tube is found to be stable. All three factors mentioned above can stabilize tubes with all fluxes. We estimate that, for the solar case, a change of gas pressure in flux tubes plays an important role in stabilizing magnetic flux tube.  相似文献   

10.
11.
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field.  相似文献   

12.
Melville  J. P.  Hood  A. W.  Priest  E. R. 《Solar physics》1983,87(2):301-307
Solar Physics - An analytical solution to the magnetohydrostatic equations is presented that generalises a solution due to Birn et al. (1978) to include the effect of gravity. There exist two...  相似文献   

13.
The temperature and density structure are computed for a comprehensive set of coronal loops that are in hydrostatic and thermal equilibrium. The effect of gravity is to produce significant deviations from the usual uniform-pressure scaling law (T(pL) 1/3) when the loops are taller than a scale height. For thermally isolated loops it lowers the pressure throughout the loop, which in turn lowers the density significantly and also the temperature slightly; this modifies the above scaling law considerably. For more general loops, where the base conductive flux does not vanish, gravity lowers the summit pressure and so makes the radiation decrease by more than the heating. This in turn raises the temperature above its uniform pressure value for loops of moderate length but lowers it for longer loops. A divergence in loop cross-section increases the summit temperature by typically a factor of 2, and decreases the density, while an increase in loop height (for constant loop length) changes the temperature very little but can halve the density.One feature of the results is a lack of equilibrium when the loop pressure becomes too large. This may explain the presence of cool cores in loops which originally had temperatures below 2 × 106 K. Loops hotter than 2 × 106 K are not expected to develop cool cores because the pressure necessary to produce non-equilibrium is larger than observed.  相似文献   

14.
The loss of equilibrium in coronal magnetic field structures is a possible source of energy for coronal heating and solar flares. We investigate whether such a loss of equilibrium occurs when a coronal loop is progressively twisted by photospheric motions. In studies of 2-D cylindrical equilibria, long loops have been found to be of constant cross-sectional area along most of their length, with axial variations being confined to narrow boundary layers. We use this information to develop a 1-D line-tied model, for a 2-D coronal loop. We specify the twist in terms of the azimuthal field and more physically, in terms of the photospheric footpoint displacement. In the former case we find a loss of equilibrium, but not in the latter. We also examine a twisted loop with a non-zero plasma pressure. The loss of equilibrium is only found at high-plasma . It is conjectured that such high- can occur in flare loops and prior to a prominence eruption. However, when the plasma evolves adiabatically, there is no loss of equilibrium.  相似文献   

15.
An energy method is used to determine a condition for local instability of field lines in magnetohydrostatic equilibrium which are rooted in the photosphere. The particular equilibrium studied is isothermal and two-dimensional and may model a coronal arcade of loops where variations along the axis of the arcade are weak enough to be ignorable. If line tying conditions are modelled by perturbations that vanish on the photosphere, then, when the field is unsheared, the condition for stability is necessary and sufficient. However, when the axial field component is non-zero, so that the field is sheared, the stability condition is only sufficient.It is found that when < 0.34 the equilibrium is stable. When = 0.34 a magnetic neutral line appears at the photosphere and it is marginally stable. When > 0.34 a magnetic island is present and all the field lines inside the island are unstable as well as some beyond it. As increases, the size of the island and the extent of unstable field lines increase. The effect of the instability is likely to be to create small-scale filamentation in the solar corona and to enhance the global transport coefficients.  相似文献   

16.
H. C. Spruit 《Solar physics》1979,61(2):363-378
Flux tubes of constant extending vertically through the solar convection zone are unstable to a convective instability if the surface field strength is less than 1270 G. By downward displacement of matter along the tube an unstable tube can transform into a new equilibrium state with lower energy which has a higher field strength. Numerical calculations of these collapsed states are presented. If the collapse starts in a field with a strength corresponding to equipartition with kinetic energy in the convection zone, it yields a surface field strength of about 1650 G. It is proposed that the small scale magnetic field in active regions consists of such tubes. The collapsed state is not in thermal equilibrium. In the deeper layers the heat exchange following the collapse is very slow but the surface layers return rapidly to temperature equilibrium. It is argued that during the gradual thermal evolution of the collapsed state its surface layers may start an overstable oscillation. A brightness-velocity correlation in this oscillation could account for the observed downdraft in the tubes.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
He i 10830 Å images show that early in sunspot cycles 21 and 22, large bipolar magnetic regions strongly affected the boundaries of the nearby polar coronal holes. East of each eruption, the hole boundary immediately contracted poleward, leaving a band of enhanced helium network. West of the eruption, the boundary remained diffuse and gradually expanded equatorward into the leading, like-polarity part of the bipolar magnetic region. Comparisons between these observations and simulations based on a current-free coronal model suggest that:
  1. The Sun's polar magnetic fields are confined to relatively small caps of high average field strength, apparently by a poleward meridional flow.
  2. The enhanced helium network at high latitude marks the location of relatively strong polar fields that have become linked to the newly erupted bipolar region in that hemisphere.
  3. The distortion of the polar-hole boundary is accompanied by a corresponding distortion of the equatorial neutral sheet in the outer corona, in which the amount of warping depends on the magnitude of the erupted flux relative to the strength of the Sun's polar magnetic fields.
  相似文献   

18.
Beveridge  C.  Longcope  D.W.  Priest  E.R. 《Solar physics》2003,216(1-2):27-40
The photosphere possesses many small, intense patches of magnetic flux. Each of these patches (or sources) is connected magnetically through the corona to several sources of opposite polarity. An elemental flux loop consists of all of the flux joining one such source to another. We find that each source is connected to twenty other sources, on average, and that the typical flux and diameter of elemental loops in the corona are 1016 Mx and 200 km; there are approximately 17 separators for each source. We also model a typical large-scale coronal loop consisting of many elemental loops and determine its complex internal topology. Each upright null lies at the end of about 22 separatrices, which tend to be clustered together in trunk-like structures, analogous to river-valleys in a geographical contour map. Prone nulls correspond to saddle points, while their spines are analogous to watersheds.  相似文献   

19.
Temperature distribution in cylindrically symmetric coronal magnetic loops has been reinvestigated under various conditions: (a) loop with the pressure varying along the radial distance, and (b) loop with constant pressure, for cooler apex loops and hotter apex loops. This work is reinvestigation of our previous work published inAstrophysics and Space Science (Chandra and Prasad, 1993b).  相似文献   

20.
Numerical solutions are presented for the summit temperature and heating in a thermally isolated coronal loop that is in hydrostatic equilibrium. The extent to which gravity modifies the usual uniform-pressure scaling law is shown, and plots of the differential emission measure are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号