首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pilot area within the Venetian Plain was selected to assess the arsenic (As) contamination of groundwater. The area represents a typical residential, industrial and agricultural organization representative of most western countries, and is also devoid of lithologies with high or anomalous As content. Hydrogeological and chemical data have been collected, the latter spatialized by a geostatistical approach. The unconfined aquifer reservoir varies from a predominantly gravel composition in the north to a sandy and silt–clay composition further south, including peat layers. The hydrochemical features of the waters are rather homogeneous, featuring low mineral content and a Ca-bicarbonate signature. In contrast, the redox state is highly variable; oxidizing conditions are predominant in the northern and coarse parts of the aquifer, whereas reducing potentials prevail in the southern and silt–clay parts. Several well waters contain arsenic in excess of drinkable limits (=10 ppb), and most of these wells are located in the southern area. A large portion of the studied area has a high probability of containing non-potable water (up to 150 ppb As). Remarkably, As “hot spots” (As > 300 ppb, up to 431 ppb) were identified at the transition from gravel to silt–clay sediments. No industrial or agricultural source of As has been found.  相似文献   

2.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

3.
The study area covers an about 100 km2 of the middle Ganga plain in Uttar Pradesh, experiencing intensive groundwater extraction. In order to recognize the arsenic contamination zones of the Varanasi environs, sixty eight groundwater samples have been collected and analyzed for major ions, iron and arsenic. Twenty one sediment samples in the four boreholes were also collected to deduce the source of arsenic in the groundwater. The preliminary survey reports for the first time indicates that part of rural and urban population of Varanasi environs are drinking and using for irrigation arsenic contaminated water mostly from hand tube wells (<70 m). The study area is a part of middle Ganga plain which comprises of Quaternary alluvium consists of an alternating succession of clay, clayey silt and sand deposits. The high arsenic content in groundwater samples of the study area indicates that 14% of the samples are exceeding the 10 μg/l and 5% of the samples are exceeding 50 μg/l. The high arsenic concentration is found in the villages such as Bahadurpur, Madhiya, Bhojpur, Ratanpur, Semra, Jalilpur, Kateswar, Bhakhara and Kodupur (eastern side of Ganga River in Varanasi), situated within the newer alluvium deposited during middle Holocene to Recent. The older alluvial aquifers situated in the western side of the Ganga River are arsenic safe (maximum As concentration of 9 μg/l) though the borehole sediments shows high arsenic (mean 5.2 mg/kg) and iron content (529 mg/kg) in shallow and medium depths. This may be due to lack of reducing conditions (i.e organic content) for releasing arsenic into the groundwater. Rainfall infiltration, organic matter from recently accumulated biomass from flood prone belt in the newer alluvium plays a critical role in releasing arsenic and iron present in sediments. The main mechanism for the release of As into groundwater in the Holocene sandy aquifer sediments of Varanasi environs may be due to the reductive dissolution of Fe oxyhydroxide present as coatings on sand grains as well as altered mica content. The high societal problems of this study will help to mitigate the severity of arsenic contamination by providing alternate drinking water resources to the people in middle Ganga plain and to arrange permanent arsenic safe drinking water source by the authorities.  相似文献   

4.
 One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000 m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400 km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10 km from the coast. The thickness of the saturated gravel aquifer ranges from 20–160 m in an area greater than 600 km2. Received, April 1997 · Revised, January 1998 · Accepted, April 1998  相似文献   

5.
Thick deposits of glaciomarine clay and silt overlain by Holocene marine sediments in Norwegian fjord valleys have been, and still are, subject to erosional processes such as river incision, ravine formation and slide activity. In Buvika, Mid‐Norway, these land‐forming processes have been highly influenced by the valley‐fill stratigraphy. Glaciomarine and marine clay sediments dominate this 8 km long hanging valley south of the Gaulosen fjord, with local occurrences of coarser‐grained sediments. Studies of sediments and structures in road excavations together with 14C ages indicate at least one, possibly two, minor glacier readvances in late Allerød/early Younger Dryas (YD) time. This implies a more dynamic ice sheet with more minor ice‐front oscillations than earlier documented in this region. Glacioisostatic rebound resulted in groundwater leaching of marine clay and quick‐clay formation in certain layers or zones. The relative sea‐level fall led to incision by rivers accompanied by numerous slides involving quick clay, which completely liquefies when remoulded. To the east, permeInger‐Lise Solberg (e‐mail: inger‐lise.solberg@sintef.no ), Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology (NTNU). Present address: SINTEF Building and Infrastructure, Høgskoleringen 7a, NO‐7465 Trondheim, Norway; Kåre Rokoengen, Department of Geology and Mineral Resources Engineering, NTNU, Sem Sælands veg 1, NO‐7491 Trondheim, Norway; Louise Hansen, Lars Olsen and Harald Sveian, Geological Survey of Norway, NO‐7491 Trondheim, Norwayable layers of northwesterly dipping sand and gravel generally originate from a former ice‐marginal delta. These relatively thick and frequent layers of interbedded sand and gravel in the clay‐dominated deposits drain groundwater in the slopes, leading to the development of deeply incised ravines. To the south and north, thinner layers of coarse material in the clay lead to pore‐pressure build‐ups and quick‐clay development, resulting in numerous slide scars. Knowledge of the morphology, stratigraphy and erosion pattern of areas prone to formation of quick clay is important in order to understand the landscape development and evaluate risk areas.  相似文献   

6.
大陆岛地下水动力学特征—以湛江东海岛为例   总被引:2,自引:0,他引:2       下载免费PDF全文
东海岛是一具有独特水文地质条件的大陆岛,浅层含水层与大陆以浅海湾相隔,中深层承压水含水层与大陆地下水系统紧密相连。为了深入地认识大陆岛地下水水动力学特征,以湛江东海岛为例,阐述了其水文地质条件,并分析了东海岛浅、中、深层地下水的流场和动态特征。分析结果表明,东海岛为一个典型且独特的大陆岛,岛内和大陆的部分浅层含水层由湛江湾相隔,岛内中、深层含水层和大陆中、深层含水层通过湛江湾相连,且具有统一的水位分布,并保持着密切的水力联系,岛内中、深层地下水由南向北径流补给湛江市区的降落漏斗中心;滨海及海水区域浅层含水层及其下伏的粘土层构成了防止海水入侵中、深层地下水的保护层;浅层地下水流场基本保持天然状态,水位动态特征主要为入渗径流型,水位变化与降雨量相关;中、深层地下水流场以人工流场为主,地下水由南向北径流,水位动态类型主要为开采动态型,水位变化主要受到开采量变化的影响;在近海岸地区,地下水动态表现为潮汐效应型,在潮汐作用下,地下水位动态具有周期性。  相似文献   

7.
This study explains the impact of sand–gravel mining and over-abstraction, and the response of the groundwater system in the Kazan Plain, Turkey. The plain used to be known for its fresh groundwater potential, valuable agricultural lands and natural beauty until the 1980s. According to the estimation in 1975, there was 15.5 million m3 annual useable freshwater in the Quaternary sand–gravel aquifer. Groundwater level ranged between 0 and 5 m from the surface of the plain in the 1970s. Because of the large and deep excavations by the sand–gravel pits during the past 25–30 years, the aquifer has thinned and removed entirely in some places. In addition, over-abstraction has accelerated the decline of the groundwater level, particularly in the middle and the upper part of the plain in recent years. As of 2009, about 12% of the total volume of the aquifer area removed by the pits and groundwater table has been reduced to between 5 and 20 m. The decline of the water table reaches 15–20 m in the regions where over-abstraction has taken place. To reduce the hazards to the groundwater system, the sand–gravel pits have to be banned immediately, a reclamation project applied and abstraction must be reduced.  相似文献   

8.
Pesticides are a potential threat to the quality of extracted groundwater when the water-supply area is used for agricultural activities. This problem is discussed for the water-supply area of Sint-Jansteen, The Netherlands, where measured pesticide concentrations in the extracted water regularly exceed EU limits (0.1 μg/L). Groundwater samples taken from the aquifer within the water-supply area show low contamination, but samples taken from the extracted water occasionally contain pesticides, making the water inadequate for drinking-water purposes. The more intense contamination of the extracted water is caused by the change in the natural groundwater flow pattern near the extraction wells. In this area, pesticide use cannot be avoided easily, and an approach is given to differentiate pesticide use in the area according to expected travel time toward the wells and the chemical characteristics of the pesticides. A groundwater flow model for the area is developed and the effects of groundwater extraction on the natural flow pattern are evaluated. Using particle tracking, the travel-time zones are determined. Combining these results and the degradation behavior of certain pesticides led to an optimal scheme to integrate agricultural activities and groundwater extraction in the area. This is illustrated for five different types of pesticides (atrazine, simazine, bentazone, MCPA, and mecoprop). Received, October 1998/Revised, July 1999, September 1999/Accepted, November 1999  相似文献   

9.
Historically, the arid conditions of La Rioja, Argentina have been the main controlling factor in its development. The shortage of surface water, which is fully used, makes groundwater a potential source for development. The government encouraged investment in early 1979, resulting in a 20-fold increase of groundwater extraction by 1998 (0.076–1.450 m3/s, respectively) to cover related needs of agriculture, industry and population growth. This extraction created unjustified uncertainties derived from negative results obtained in hydrological balances. However, a 0.5 m lowering of the water-table surface was experienced. A knowledge of groundwater functioning was required to establish a reliable frame of reference for development and, at the same time, to find possible scenarios of feasible economic activities in harmony with accessible water resources and aptitude of the environment. The flow regime was found to be composed of three main systems: a regional, an intermediate and several local. The intermediate system provides water for the extraction boreholes, and discharges naturally in Salina La Antigua. From the chemical perspective the intermediate system has three groundwater groups. Group I has an outstanding fluoride concentration (1.98–3.10 mg/l) defined to the north of the City of la Rioja and the highest temperature (26.8–33.0°C), the lowest lithium content (0.029–0.059 mg/l) and moderate arsenic (≤0.038 mg/l). Group II has the moderate arsenic content (≤0.38 mg/l) detected to the south of the City of La Rioja and high lithium (0.024–0.085 mg/l), Group III has the lowest TDS (456–931 mg/l) and arsenic (0.007–0.012 mg/l) and the highest lithium (0.067–0.141 mg/l). to A regional flow is represented by Group IV with one order of magnitude higher strontium (4.870 mg/l), lead (0.021 mg/l) and uranium (0.362 mg/l) content than the other groups. Results provide evidence to eliminate several well-established hydro-myths such as “the boreholes are getting dry” and “boreholes are getting saline water”. The aquifer (granular Tertiary and Quaternary material) thickness (≈750m) was defined with the aid of the geological framework, geothermometers and Modflow modelling. The aquifer extent extends far beyond the limits of the study area. Several economic activities were found to be feasible with available groundwater resources and without bordening the environment (fish farming, bottled-water marketing, SPA activities and farming of endangered species).  相似文献   

10.
The Western Desert of Egypt is an area of natural expansion for agricultural, industrial, and civil activities. This expansion has led to a great demand for groundwater. In the central part of Egypt, on the western limestone plateau, vertical electrical sounding and borehole geophysical logging were conducted to delineate aquifer boundaries. The measurements were interpreted using the lithological information from the drilled wells as a constraining factor. Fractured chalky limestone sediments represent the main aquifer, which is covered by sand and gravel deposits and which rests directly on partially saturated and highly resistive massive limestone. Discontinuous clay layers, which overlie the aquifer unit, were detected in the southern part of the study area as well as a relatively thin marly limestone layer in the northern part. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. Although the groundwater is normally brackish, it can serve the acute demands for water, especially for agricultural purposes.  相似文献   

11.
 Quaternary alluvial aquifers in the paleo Pennar delta region of Andhra Pradesh (Long. 80°0′ and 80°12′; Lat. 14°40′ and 14°20′) constitute an important coastal strip, with potential fresh groundwater resources and several well fields in operation. The lineament patterns and traces of paleo channels provide basic information on the configuration and boundaries of paleo delta and the possible neotectonic movements in the region. The paleo delta region is essentially characterized by freshwater aquifer systems at the near-surface depths, (up to 50 m from ground level) with transmissivity values in the system ranging from 1200 to 2500 m2/day. This groundwater system has been subjected to heavy draft situation over the last two decades, parlicularly near the outer rim of the delta where an unlined brackish-water canal runs parallel to the coast imparting chloride contamination to the adjoining fresh aquifers. A two-dimensional solute transport model solution was applied to assess chloride migration rates inland under different hydraulic stresses, combining finite difference solution of flow equation and the method of characteristic solution of solute transport equation. Groundwater flow and chloride migration patterns/rates were obtained for different simulated stress events in the delta system, and measures required to protect the freshwater resources ara outlined. Received: 2 January 1997 · Accepted: 4 November 1997  相似文献   

12.
 The occurrence, movement and control of groundwater, particularly in hard-rock areas, are governed by different factors such as topography, lithology, structures like fractures, faults and nature of weathering. An attempt is made in the present study to investigate the extent of the influence of structures such as fractures and thereby delineate the nature of subsurface lithology with the help of an electrical resistivity method. For this study, the Upper Gunjanaeru River basin, Cuddapah district Andhra Pradesh was chosen to determine groundwater potentials. In order to understand the significance of the fracture pattern, geological, hydrogeomorphological and lineament maps were prepared based on the field data and also from the LANDSAT TM imagery. Further, electrical resistivity surveys were conducted to determine the subsurface lithology and also to confirm the studies of LANDSAT imagery. The isoresistivity contour map has been prepared based on the 45 VES conducted to determine the resistivity variations in the study area. The isoresistivity contours obtained were found to conform to the structural trends obtained by geological studies and also confirm the relationship between the structure and secondary porosity present in the rocks. The lineaments in the area have two preferred directions. One set is a NE-SW direction (N 30°–70° E; S 30°–70° W) and another is a NW-SE direction (N 0°–30° W; S 0°–30° E and N 60°–80° W; S 60°–80° E). The water-table contour map shows that the direction of groundwater flow is south to north. Received: 3 March 1997 · Accepted: 17 June 1997  相似文献   

13.
The arsenic content of geothermal hot springs and their sediments in the north-central Andean region of Ecuador has been investigated. The area of study is located between parallels 1°11′N and 1°30′S and includes five provinces. The area is rich in geothermal surface manifestations that are mainly used for medicinal baths in recreational complexes. Unfortunately, water residuals without treatment are released from the recreational facilities to surrounding water bodies. The results indicate that total arsenic in geothermal waters in this region has a range of 2–969 μg As/L, and sediments contain arsenic ranging from 1.6 to 717.6 mg/kg. Chemical analyses of sediment samples show the presence of sulfur, iron, aluminum and calcium. A high concentration of natural organic matter was also found in some samples (20–29.5%); thus sorption and coprecipitation can be the main mechanisms of As immobilization on mineral phases and natural organic matter.  相似文献   

14.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   

15.
渤海中部表层沉积物分布特征与粒度分区   总被引:4,自引:0,他引:4  
为了解渤海中部海区表层沉积物分布特征与物质来源和水动力环境的关系,高密度采集了海区1448个表层沉积物样品,并进行粒度参数的相关分析。结果表明,研究区表层沉积物类型主要有砾石、砂质砾、砾质砂、砂、粉砂质砂、砂质粉砂、粉砂、黏土质粉砂、砂-粉砂-黏土和粉砂质黏土10种类型。海区中分布范围最广泛的是粉砂质砂和黏土质粉砂,而砾石和粉砂的分布范围相对较小。海区主要由老铁山水道、冲刷槽砂砾区、渤中砂质浅滩和辽东砂质浅滩、渤中粉砂质平原、渤海湾黏土层粉砂三角洲平原和渤西滨岸倾斜砂质平原五个沉积物粒度分区。主导海区沉积物分布模式的动力机制是进入渤海的黄海暖流余脉形成的渤海环流,另外,渤海海峡强潮流、辽东湾环流和莱州湾环流也是控制区域表层沉积物的重要动力因素。这些动力驱动因素促成了渤海物质与黄海物质之间“北进南出”的交换模式。  相似文献   

16.
Three dimensional lithologic modeling techniques have been used for detailed characterization and groundwater flow modeling of the Quaternary aquifer system of the Sohag area, Egypt. Well log data were used for building the lithologic model using RockWorks. A groundwater flow model, facilitated by MODFLOW 2000, was built using results of the lithologic model. The obtained lithologic model honored the well log data and revealed a complex sedimentary system, which is mainly composed of six lithologic categories: clay, clay and sand, fine sand, coarse sand, sand and gravel, and gravel. Inter-fingering and presence of lenses are the main characteristics of the sedimentary basin in the study area. A wide range of hydraulic conductivities is present, which vary spatially and control the groundwater flow. Heterogeneity of the aquifer system is spatially represented where different hydraulic conductivities are found in the different directions. Sandy layers tend to be connected. Hydraulic continuity is represented by inter-fingering and connection of sandy materials within the aquifer system.  相似文献   

17.
Hypersaline lakes occur in hydrologically closed basins due to evaporitic enrichment of dissolved salts transported to the lakes by surface water and groundwater. At the hypersaline Lydden Lake in Saskatchewan, Canada, groundwater/lake-water interaction is strongly influenced by the geological heterogeneity of glacial deposits, whereby a highly permeable glaciofluvial sand/gravel deposit is underlain by glaciolacustrine deposits consisting of dense clay interspersed with silt/sand lenses. Pressure head distribution in a near shore area indicates a bi-directional flow system. It consists of topographically driven flow of fresh groundwater towards the lake in the sand/gravel aquifer and density-driven, landward flow of saline groundwater in the underlying glaciolacustrine deposits. Electrical resistivity tomography, and chemical and isotopic composition of groundwater clearly show the landward intrusion of saline water in the heterogeneous unit. The feasibility of bi-directional flow and transport is supported by numerical simulations of density-coupled groundwater flow and transport. The results suggest that the geologically controlled groundwater exchange processes have substantial influences on both inputs and outputs of dissolved minerals in hypersaline lakes in closed basins.  相似文献   

18.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

19.
The main aim of the present study is to detect the status of groundwater resources in west Mallawi area which represented one of the new reclamation lands. In order to achieve this aim, the hydrogeological and hydrogeochemical studies are carried out, based on the results of 21 pumping tests and chemical analysis of 29 water samples. Two water-bearing units are detected in the study area, namely, the Eocene fractured limestone aquifer which occupies the east portion of the studied area. The second aquifer consists of friable sediments of sand and gravel and may be related to the late Oligocene–early Miocene age and overlies the limestone rocks in the west, and this aquifer were studied for the first time in this work. Regionally, the groundwater flow in the area under study occurs toward the north and east directions. There is a hydraulic connection between both aquifers through the structural pattern affected the area. The partial recharge of the both aquifers takes place through the upward leakage from deep aquifers and the Nile water. There is a general decrease in the water salinity from west to east direction. The groundwater of both aquifers was evaluated for the different purposes and concluded that, it is considered suitable for different uses.  相似文献   

20.
 Geochemical characteristics of six trace metals – Cu, Co, Ni, Zn, Cd and Cr – in the bulk sediment and sand, silt and clay fractions of a tropical estuary on the southwest coast of India have been studied and discussed. In bulk sediment, the trace metal concentration is controlled mainly by the textural composition of the sample. Mud, sandy mud and sandy silt register higher concentrations of trace metals than that in sand-dominant sediments. The granulometric partitioning studies also re-affirmed the role of particle size in enriching the trace metals. The silt and clay fractions exhibit 7–8 times the enrichment of Cu and Cd compared to that in sand. The enrichment factors of Zn, Cr, Ni and Co in the silt and clay fractions, compared to that in sand, are 5–6, 4–5, 2–5 and 2–3 times, respectively. The trace metals in the sand fraction, particularly Ni and Cr, exhibit strong positive correlation with the heavy mineral content of the samples. It clearly indicates a heavy mineral pathway to the trace metals in the sand fraction. Cu and Co in silt and clay fractions exhibit a marked decrease towards the high saline zones of the estuary. This is attributed to the desorption of Cu and Co from particulate phases during estuarine mixing. Contrary to Cu and Co, the content of Zn in the clay fraction shows a marginal increase towards the estuarine mouth. This could be explained by the influx of Zn-rich contaminant discharges from Zn-smelting industries located slightly north of the estuarine mouth. The released Zn will effectively be held in the lattices of the clay mineral montmorillonite, which also exhibits a marked increase towards the estuarine mouth. The anomalously high values of Cd in some places of the Central Vembanad estuary is attributed to the local pollution. Received: 10 July 1995 · Accepted: 3 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号