首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local scour around spur-dikes   总被引:1,自引:0,他引:1  
Experimental investigations were conducted to study the effects of upstream flow conditions, sediment characteristics, and spur-dike's geometry on the maximum scour depth and scour pattern around a spur-dike. Dimensional analyses to find different non-dimensional terms affecting the phenomenon were obtained and verified with the help of the experimental data. An empirical formula for the maximum depth of scour was derived and found to be identical in form to the regime equations of Lacey and Blench.  相似文献   

2.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

3.
Spur dikes are river training structures that have been extensively used worldwide for towards enhancing flood control and the stability of embankments and riverbanks.However,scour around spur dikes can be a major problem affecting their stability and hydraulic performance.The precise computation of temporal scour depth at spur dikes is very important for the design of economical and safe spur dikes.This study focuses on experimentally assessing the temporal variation of scour depth around a vertical wall spur dike and identifying the parameters,which mostly influence spur dike performance for a channel bed surface comprised of sand-gravel mixtures.In the current study,the authors did physical experiments in a flume based study to obtain new data,aimed at deriving a new predictive model for spur dike scour and comparing its performance to others found in the literature.It was found that the dimensionless temporal scour depth variation increases with an increase in(i)the threshold velocity ratio,(ii)the densimetric Froude number of the bed surface sediment mixture,(iii)the flow shallowness(defined as the ratio of the approach flow depth,y,to the spur dike’s transverse length,l),and(iv)the flow depth-particle size ratio.It is also concluded that the temporal scour depth variation in the sediment mixture is influenced by the non-uniformity of sediment and decreases with an increase in the non-uniformity of the sediment mixture.A new mathematical model is derived for the estimation of temporal scour depths in sand-gravel sediment mixtures.The proposed equation has been calibrated and validated with the experimental data,demonstrating a good predictive capacity for the estimation of temporal scour depth evolution.  相似文献   

4.
Since local scour at bridge piers in rivers and estuaries is a major cause of bridge failure, estimation of the maximum local scour depth is of great importance to hydraulic and coastal engineers. Although numerous studies that focus on scour-depth prediction have been done and published, understanding of the flow and turbulence characteristics of the horseshoe vortex that drives the scour mechanism in a developing scour hole still is immature. This study aims to quantify the detailed turbulent flow field in a developing clear-water scour hole at a circular pier using Particle Image Velocimetry (PIV). The distributions of velocity fields, turbulence intensities, and Reynolds shear stresses of the horseshoe vortex that form in front of the pier at different scour stages (t=0, 0.5, 1, 12, 24, and 48 h) are presented in this paper. During scour development, the horseshoe vortex system was found to evolve from one initially small vortex to three vortices. The strength and size of the main vortex are found to increase with increasing scour depth. The regions of both the maximum turbulence intensity and Reynolds shear stress are found to form at a location upstream of the main vortex, where the large turbulent eddies have the highest possibility of occurrence. Results from this study not only provide new insight into the complex flow-sediment interaction at bridge piers, but also provide valuable experimental databases for advanced numerical simulations.  相似文献   

5.
Estimating the time evolution of a local scour hole downstream of submerged weirs can help determine the maximum scour depth and length and is essential to designing submerged weir foundations.In the current study, artificial neural networks with a backpropagation learning algorithm were used to estimate the temporal variation of scour profiles downstream of submerged weirs under clear water conditions. Physical factors, such as the flow condition, weir size, and sediment characteristics, are ge...  相似文献   

6.
Results of an experimental study on the countermeasure of scour depth at circular piers are presented. Experiments were conducted for pier scour with and without a splitter plate under a steady, uniform clear-water flow condition. The results of pier scour without splitter plate were used as a reference. Different combinations of lengths and thicknesses of splitter plates were tested attaching each of them to a pier at the upstream vertical plane of symmetry. Two different median sediment sizes (d 50 = 0.96 and 1.8 mm) were considered as bed sediment. The experimental results show that the scour depth consistently decreases with an increase in splitter plate length, while the scour depth remains independent of splitter plate thickness. In addition, temporal evolution of scour depth at piers with and without a splitter plate is observed. The best combination is found to be with a splitter plate thickness of b/5 and a length of 2b. Here, b denotes the pier diameter. An empirical formula for the estimation of equilibrium scour depth at piers with splitter plates is obtained from a multiple linear regression analysis of the experimental data. The flow fields for various combinations of circular piers with and without splitter plate including plain bed and equilibrium scour conditions were measured by using an acoustic Doppler velocimeter. The turbulent flow fields for various configurations are investigated by plotting the velocity vectors and the turbulent kinetic energy contours on vertical and horizontal planes. The splitter plate attached to the pier deflects the approach flow and thus weakens the strength of the downflow and the horseshoe vortex, being instrumental in reducing the equilibrium scour depth at piers. The proposed method of pier scour countermeasure is easy to install and cost effective as well.  相似文献   

7.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   

8.
Most models for predicting pressure-flow scour depth are based on use of the continuity and energy equations. The current study presents a model to predict pressure-flow scour depth using the momentum equation considering the jet flow deflected by the bridge deck. When approaching the bridge deck, the upstream flow acts as a jet flow that deviates toward the bed. Below the bridge deck, a combined jet-flow is created as a result of merging the initial jet-flow and the pressure-flow. The continuit...  相似文献   

9.
LOCAL SCOUR AROUND BRIDGE ABUTMENTS   总被引:2,自引:0,他引:2  
1 INTRODUCTION The protrusion of a bridge abutment or a spur dike into the main channel creates a disturbance and obstruction to the otherwise equilibrium state of sediment transportation in an alluvial river. The flow accelerates and separates at the upstream face of the abutment as it moves past the obstacle, creating a vortex trail that moves downstream in a direction approximately perpendicular to the structure. The result is that the bed around the structure is eroded locally. The l…  相似文献   

10.
SCOUR HOLE CHARACTERISTICS BELOW FREE OVERFALL SPILLWAY   总被引:1,自引:0,他引:1  
1 INTRODUCTION Flow through hydraulic structures often issues in the form of jets. The jet velocities are usually high enough to produce sizable, even dangerous scour hole. The extent of the resulting scour depends on the nature of bed material and flow characteristics. The erosion process is quite complex and depends upon the interaction of hydraulic and morphological factors. Scouring may lead to: endangering the stability of the structure by structural failure or increased seepage, end…  相似文献   

11.
The special feature of bend flow leads to scouring of the bed and bank. Various parameters like flow depth, flow velocity or discharge, geometry of bend and characteristics of bed material may affect the scour process. Experiments were carried out to study the effect of some important parameters on bend scour under clear water condition. Experiments were conducted in a 0.6m wide and 0.7m high flume with 90 degree bend. The lateral variations of bed slope were studied. The maximum depth of scour was correlated to densimetric Froude number, relative bend radius and relative depth of flow.  相似文献   

12.
1 INTRODUCTION In alluvial streams bed scour often occurs if the sediment load is less than the transport capacity of the flow. Two types of scour are identified, namely local scour and channel bed scour. Channel bed scour can be further classified accord…  相似文献   

13.
1 INTRODUCTION Scouring in the bend ways leads to deep sections at the toe of the outer bank of the bend. The presenceof secondary currents and the greater depths at the outer bank cause high velocity along the outer bank.The high velocity and shear stres…  相似文献   

14.
1 INTRODUCTION Protection of bridge piers against local scour is of major importance to bridge maintenance. The safety of bridges is seriously threatened by the river flood during typhoons or thunderstorms. In Taiwan typhoon’s floods are often so strong in possession of high energy to transport a large amount of bed sediment in river. The average velocity in a flood river can go typically over 3 m/s even up to 5 m/s, several times of the regular flow speed. The peak discharge of flood i…  相似文献   

15.
Local scour may occur when a hydraulic structure is positioned in a channel with an erodible bed. Herewith investigated experimentally are the erosion and flow pattern due to a water jet passing over a channel bed at the asymptotic (final) state. The development of the scour hole, its maximum scour depth and length, are recorded and compared with available scour-depth relations. Two sets of experiments (see Table 1) were carded out. Set 1 (3 runs) was concerned with measuring the vertical instantaneous velocity distribution in the scour hole. The scour hole at the asymptotic (final) state, t=100 [h] was investigated. Set 2 (5 runs) was concerned with studying the physics of scouring. Thescour hole at about mid-state, t≈0.5 [h], was investigated; subsequently the scour-hole depth was linearly extended on the semi-log scale to 72 [h]; no velocity measurements were performed. The present data are put in context with some (popular) existing relations; recommended is a modification of some of these relations。  相似文献   

16.
A new analytical method was evaluated for predicting scour profile downstream of a submerged sluice gate with an apron. The differential equations between bed Shear stress and Scour profile Curvature(SSC model) were utilized to predict the scour profile in both temporal and equilibrium stages. A jet momentum flux was considered as an external source of erosion on a hypothetical particle ring as the boundary between the flow and sediment bed. The scour length and sediment resistance factor were t...  相似文献   

17.
用宏观方法测定震源深度的量版   总被引:1,自引:0,他引:1       下载免费PDF全文
根据常用公式 h=Δi/10(I0-Ii)/s-11/2, 式中h为震源深度,Δi为烈度为Ii的等震綫半径,I0为震中烈度,S为一系数;取(1)式的对数得 logh=logΔi-1/2log[10(I0-Ii)/s-1], 按(2)式可以作成一量版,以同时測定h和s。利用这个量版測定了19个中国地震的s和h,結合文献[4]的資料,指出中国东部的s系数比西部的偏低;且当深度加大时,s系数加大。采用文献[1,5]的資料測定了61个地震的s系数,結果表明s的数值随深度的增加而加大,占与低速层的关系并不明显。  相似文献   

18.
泥石流拦砂坝坝后侵蚀坑形态和深度是泥石流冲刷基础研究的薄弱环节。通过室内水槽实验,探讨了泥石流坝后侵蚀坑的形态和不同实验控制条件下侵蚀坑深度的变化规律等。由实验观察可知,侵蚀坑纵剖面整体上呈现两端浅中间深的形态特征,其最深点的位置随水槽坡度增大向下游方向发展;侵蚀坑坑内上游坡度较下游坡度陡,对于具有相同级配的粘性砂和无粘性砂,无粘性砂的侵蚀坑坑内坡度较粘性砂的缓;侵蚀豌的最大深度受沟床纵坡、泥石流的容重、沟床组成物质的性质(特征粒径、粘性)等因素的影响较大;泥砂粘性的存在将大大削弱侵蚀的深度。  相似文献   

19.
1 wrsoooCTIoxThe Yeuow mver crtes a huge amoun of sedimcht and the noods often cause raPid and severeerosinn and dePOsihon. The channl bed of the YelOw mver often exPeriences degIadation in the mainchannel during fioods. In some cases vigorous erosion uP to l0 meters takes place in a shOrt Period oftiIn. Such phenomenon usually occurs in the ndddie reaChs of the Yelow mver and its tributaries suchas the Wdse mVer the Beiluohe mver etc. For examPle, th6 hyPenconcentraed nood in July l…  相似文献   

20.
Bridge pier scour mitigation under steady and unsteady flow conditions   总被引:1,自引:1,他引:0  
Watercourse morphology is affected by local scouring when the flow interferes with anthropic structures. Controlling the scour hole size is of predominant importance to guarantee bridge safety as well as to limit the variations of river morphology. A combined countermeasure against bridge pier scour is proposed and tested in order to reduce the maximum scour depth and deviate it away from the bridge foundation. In the first part of the laboratory campaign, combination of two countermeasures (bed-sill and collar) was evaluated for a circular pier under clear-water and live-bed steady flow conditions. The proposed combined countermeasure exhibited an efficiency of about 64% in terms of scour depth reduction. Afterwards, it was tested in unsteady flow conditions, first for a circular pier, then in the case of a rectangular pier with round nose and tail, two circular in-line piers and two rectangular in-line piers, under a hydrograph with a peak flow velocity slightly above the threshold condition of sediment motion. Results showed that the combined countermeasure had an efficiency of about 63% for a single circular pier; however, higher efficiency (about 75%) was obtained in applications to rectangular pier and two in-line circular or rectangular piers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号