首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an assessment of the enhanced geothermal system (EGS) resource base of the conterminous United States, using constructed temperature at depth maps. The temperature at depth maps were computed from 3 to 10 km, for every km. The methodology is described. Factors included are sediment thickness, thermal conductivity variations, distribution of the radioactive heat generation and surface temperature based on several geologic models of the upper 10 km of the crust. EGS systems are extended in this paper to include coproduced geothermal energy, and geopressured resources. A table is provided that summarizes the resource base estimates for all components of the EGS geothermal resource. By far, the conduction-dominated components of EGS represent the largest component of the U.S. resource. Nonetheless, the coproduced resources and geopressured resources are large and significant targets for short and intermediate term development. There is a huge resource base between the depths of 3 and 8 km, where the temperature reaches 150–250°C. Even if only 2% of the conventional EGS resource is developed, the energy recovered would be equivalent to roughly 2,500 times the annual consumption of primary energy in the U.S. in 2006. Temperatures above 150°C at those depths are more common in the active tectonic regions of the western conterminous U.S., but are not confined to those areas. In the central and eastern U.S. there are identified areas of moderate size that are of reasonable grade and probably small areas of much higher grade than predicted by this analyses. However because of the regional (the grid size is 5′ × 5′) scale of this study such potentially promising sites remain to be identified. Several possible scenarios for EGS development are discussed. The most promising and least costly may to be developments in abandoned or shut-in oil and gas fields, where the temperatures are high enough. Because thousands of wells are already drilled in those locations, the cost of producing energy from such fields could be significantly lowered. In addition many hydrocarbon fields are producing large amounts of co-produced water, which is necessary for geothermal development. Although sustainability is not addressed in this study, the resource is so large that in at least some scenarios of development the geothermal resource is sustainable for long periods of time.  相似文献   

2.
Maps of shallow depth (down to −250 m) temperature distribution across Canada show large variability, related mainly to surface climatic forcing. Very small changes of temperature with depth in the upper 250 m are related to heat gained by the subsurface due to recent global warming. Temperature data compiled from precise temperature logs in equilibrium wells, and temperature time series from a network of meteorological stations, allow calculation of the available heat energy for heating in the cold period and for cooling in peak warm months. Utilization of this energy resource has the potential for significant CO2 reduction in Canada. The geothermal energy stored in the ground can be used, with the help of heat pumps, for heating, given very low winter temperatures. The amount of potential heat available is vast. In Canada, south of permafrost border, the integrated value of potentially available heat during the heating season down to −50 m is 1.1 E21 J (1100 quads).  相似文献   

3.
Geothermal energy resources in North Dakota and South Dakota occur as low (T < 90°C) and intermediate (T < 150°C) temperature geothermal waters in regional-scale aquifers within the Williston and Kennedy Basins. The accessible resource base is approximately 21.25 exajoules (1018 J = 1 exajoule, 1018 J ~ 1015 Btu = 1 quad) in North Dakota and 12.25 exajoules in South Dakota. Resource temperatures range from 40°C at depths of about 700 m to 150°C at 4500 m in the Williston Basin in North Dakota. In South Dakota, resource temperatures range from 44°C at a depth of 550 m near Pierre to 100°C at a depth of 2500 m in the northwestern corner. This resource assessment raises the identified accessible resource base by 31% above the previous assessments and by 310% over an earlier assessment. The large increases in the identified accessible resource bases reported in this study result from including all potential geothermal aquifers and better understanding of the thermal regime of the region. These results imply that a reassessment of stratabound geothermal resources in the United States that includes all geothermal aquifers would increase significantly the identified accessible resource base. The Williston Basin in North Dakota is characterized by conductive heat flows ranging from 43 to 68 mW m–2 and averaging 55 mW m–2. Comparisons of calculated and bottomhole temperatures measured in oil fields over the Nesson Anticline and the Billings Nose show temperature differences which suggest that upward groundwater flow in fractures on the westward sides of the structures slightly perturbs the otherwise conductive thermal field. The maximum heat-flow disturbance is estimated to be of the order of 10 to 20 mW m–2. These thermal anomalies do not alter significantly the accessible geothermal resource base. Anomalous heat flow in south-central South Dakota is caused by heat advection in gravity-driven groundwater flow in regional aquifers. Heat flow is anomalously high (Q > 130 mW m–2) in the discharge area in south-central South Dakota and anomalously low (30 mW m2) in the recharge area near the Black Hills and along the western limb of the Kennedy Basin in western South Dakota. Heat-flow disturbances are the result of vertical groundwater flow through fractures in the discharge area of the regional flow system in South Dakota are minor and may be significant only in deeply incised stream valleys. An important factor that controls the temperature of the resource in both North Dakota and South Dakota is the insulating effect of a thick (500–2000 m) layer of low thermal-conductivity shales that overlie the region. The effective thermal conductivity of the shale layer is approximately 1.2 W m–1 K–1 in contrast to sandstones and carbonates, which have conductivities of 2.5 to 3.5 W m–1 K–1. This low conductivity leads to high geothermal gradients (dT/dz > 50°C km–1), even where heat flow has normal continental values, that is 40–60 mW m–2. Engineering studies show that geothermal space heating using even the lowest temperature geothermal aquifers (T 40 °C) in North Dakota and South Dakota is cost effective at present economic conditions. The Inyan Kara Formation of the Dakota Group (Cretaceous) is the preferred geothermal aquifer in terms of water quality and productivity. Total dissolved solids in the Inyan Kara Formation ranges from 3,000 to more than 20,000 mg L–1. Porosities normally are higher than 20%, and the optimum producing zones generally are thicker than 30 m. The estimated water productivity index of a productive well in the Inyan Kara Formation is 0.254179 l s–1 Mpa–1. Deeper formations have warmer waters, but, in general, are less permeable and have poorer water quality than the Inyan Kara.  相似文献   

4.
The McKenzie model proposed in 1978, which is widely used in calculating the thermal history of rift basins and other extensional basins, incorrectly assumes that all heat passing through the lithosphere originates below the lithosphere. In reality, heat from radiogenic sources within the lithosphere, especially in the upper crust, may represent more than half the heat flow at the top of basement. Thinning of the lithosphere during extension does indeed result in an increase of heat flowing from the asthenosphere, but this thinning also reduces the radiogenic heat from within the lithosphere. Because these two effects cancel to a large degree, the direct effects of lithospheric extension on heat flow at the top of basement are smaller than those predicted by the McKenzie model. Because of permanent loss of radiogenic material by lithospheric thinning, the heat flow at the top of basement long after rifting will be lower than the pre-rift heat flow.The McKenzie model predicts an instantaneous increase in heat flow during rifting. The Morgan model proposed in 1983, however, predicts a substantial time delay in the arrival of the higher heat flow from the asthenosphere at the top of basement or within sediments. Using the Morgan model, heat flow during the early stages of rifting will actually be lower than prior to rifting, because the time delay in the loss of radiogenic heat is less than the time delay in arrival of new heat from the asthenosphere.  相似文献   

5.
Radiogenic heat production (RHP) represents a significant fraction of surface heat flow, both on cratons and in sedimentary basins. RHP within continental crust—especially the upper crust—is high. RHP at any depth within the crust can be estimated as a function of crustal age. Mantle RHP, in contrast, is always low, contributing at most 1 to 2 mW/m2 to total heat flow. Radiogenic heat from any noncrystalline basement that may be present also contributes to total heat flow. RHP from metamorphic rocks is similar to or slightly lower than that from their precursor sedimentary rocks. When extension of the lithosphere occurs—as for example during rifting—the radiogenic contribution of each layer of the lithosphere and noncrystalline basement diminishes in direct proportion to the degree of extension of that layer. Lithospheric RHP today is somewhat less than in the distant past, as a result of radioactive decay. In modeling, RHP can be varied through time by considering the half lives of uranium, thorium, and potassium, and the proportional contribution of each of those elements to total RHP from basement. RHP from sedimentary rocks ranges from low for most evaporites to high for some shales, especially those rich in organic matter. The contribution to total heat flow of radiogenic heat from sediments depends strongly on total sediment thickness, and thus differs through time as subsidence and basin filling occur. RHP can be high for thick clastic sections. RHP in sediments can be calculated using ordinary or spectral gamma-ray logs, or it can be estimated from the lithology.  相似文献   

6.
Geographic information systems (GIS) are increasingly being used in environmental impact assessments (EIA) because GIS is useful for analysing spatial impacts of various development scenarios. Spatially representing these impacts provides another tool for landscape ecology in environmental and geographical investigations by facilitating analysis of the effects of landscape pattern on ecological processes and examining change over time. Landscape ecological principles are applied in this study to a hypothetical geothermal development project on the Island of Hawaii. Some common landscape pattern metrics were used to analyse dispersed versus condensed development scenarios and their effect on landscape pattern. Indices of fragmentation and patch shape did not appreciably change with additional development. The amount of forest to open edge, however, greatly increased with the dispersed development scenario. In addition, landscape metrics showed that a human disturbance had a greater simplifying effect on patch shape and also increased fragmentation than a natural disturbance. The use of these landscape pattern metrics can advance the methodology of applying GIS to EIA.  相似文献   

7.
李双  肖洪浪  王芳  周茂先 《中国沙漠》2014,34(6):1544-1551
目前国内借助热平衡技术开展荒漠植物蒸腾耗水的研究已十分普遍,但涉及测量精度与误差来源的分析研究鲜有报道.本文对茎干热平衡茎流仪监测植株茎流的基本原理进行了介绍,并在此基础上论述了茎干热平衡方法在实际应用中的测量精度及误差的主要来源,为使用热平衡茎流仪监测植物,尤其是荒漠植物提供参考.水分是干旱、半干旱区植物生长的主要限制因子.明确荒漠植物的需水与耗水规律可以为荒漠区生态环境建设过程中的植被种类选择、布局及管理提供科学依据.  相似文献   

8.
改革开放以来,中国的外商直接投资经历了从“引进来”到“走出去”的发展历程。2016与2017年,中国对外直接投资(COFDI)流量与存量先后跃升至全球第二位,由外商直接投资吸收国转变为世界主要对外直接投资国之一。在中美双方经贸合作伙伴关系持续深入背景下,美国已成为中国对外直接投资首位东道国。投资是落于具体地域的,不同尺度地域投资环境的差异性是导致中国对美直接投资时空分异的重要原因。立足于中国(投资母国)视角,以美国州内各选区为研究地域尺度,利用空间自相关等方法,对美国典型州——得克萨斯州的中国对外直接投资的时空格局与演变特征进行了探讨,同时引入面板数据计量模型对COFDI在得州内各选区间投资驱动因素进行了实证分析。结果表明:(1)得州内COFDI存量持续增长,但阶段性特征明显;(2)得州内COFDI以国有企业并购为主,且主要集中在能源产业;(3)COFDI州内集聚程度较弱,局部选区间多呈现出相异属性集聚特征;(4)市场规模、劳工人数、交通通达性、华人移民数对COFDI具有正向促进作用,劳动成本、教育水平、税率、经济密度对COFDI具有不同程度的负向作用。研究结果可为中国政府、跨国企业在...  相似文献   

9.
Exertional heat illnesses affect thousands of athletes each year across the United States (U.S.). Heat safety guidelines such as those developed by the American College of Sports Medicine (ACSM) are widely used to direct activities based on environmental conditions but rely on a uniform set of heat safety categories. Due to geographic variations in heat exposure and acclimatization, however, lower heat safety thresholds may be needed in areas with cooler climates. Our study addresses this shortcoming by developing regional guidelines for athletic activity that use relative thresholds of a commonly used heat metric -- the wet bulb globe temperature (WBGT). We employed a unique WBGT climatology for the contiguous U.S. to determine locally extreme WBGTs, defined as the 90th percentile warm season daily maximum value, for 217 stations. Three heat safety regions were identified based on local extremes: Category 3 (WBGTs ≥ 32.3 °C), Category 2 (30.1–32.2 °C), and Category 1 (≤30 °C). Geographically, Category 3 encompasses much of the southeastern quadrant of the U.S. along with portions of the Southwest, and the Central Valley of California; Category 2 areas extend in an arc from the interior Northwest through Nevada and portions of the Midwest, Ohio Valley, and Northeast; and Category 1 locations include the Pacific Coast, New England, and the northern tier of the country. Associated regional activity guidelines based on those developed by the ACSM and the Georgia High School Association (GHSA) were developed for each heat safety region.  相似文献   

10.
11.
郝小翠  张强  杨泽粟 《中国沙漠》2015,35(1):211-219
利用"黄土高原陆面过程试验研究(LOPEX)"2010年6月定西站的陆面过程综合观测资料,以造成大孔径闪烁仪(LAS)和涡动相关仪(EC)测量感热通量的差异为切入点,从中尺度垂直感热平流输送过程入手,将垂直感热平流输送的贡献作为地表有效能量的一部分引入EC直接观测的感热通量,对比引入前后LAS和EC测量感热通量的差异大小.结果表明:黄土高原定西观测站近地层大气垂直方向主要表现为向上运动,峰值达到0.074 m·s-1,为垂直感热平流输送提供了必要的动力条件.尤其该地区处在半干旱区,地表受太阳辐射加热比较显著,近地层温度梯度最大可达0.39 K·m-1,为产生垂直感热平流提供了能量基础.加入垂直感热平流输送的贡献后,EC地表能量不闭合度的日均值由直接观测的0.30缩小到0.24.修正后,LAS和EC测量的感热通量拟合的线性趋势系数由直接观测时的1.258缩小到1.186,两者差异得以缩小.  相似文献   

12.
坡面含沙水流水动力学特性研究进展   总被引:22,自引:0,他引:22  
坡面流是坡面侵蚀的主要动力之一,具有独特的水动力学特性。本文对坡面含沙水流的流态、阻力系数、流速的测量与计算、径流能量以及含沙量对以上参数的影响进行了系统深入的论述。表征坡面流流态的参数有雷诺数与弗汝德数,雷诺数研究的分歧点一般存在于对其“层流”的界定上,降雨扰动是造成其流态特殊性的主要原因,一般认为裸土上的清水坡面流弗汝德数大于1,较少的研究含沙水流流态的资料表明,目前对含沙水流雷诺数的观点不一,但多数学者认为含沙水流属于缓流范畴;不同坡面试验所获得的阻力系数值不同,影响阻力系数的因素有雷诺数、水深、弗汝德数、含沙量等,在含沙水流中,阻力系数与雷诺数、水深的关系复杂,与弗汝德数呈负相关,随含沙量的增加而增大;测量坡面流流速的方法很多,各自存在优缺点,精密仪器暂不适合量测含沙水流,用染色剂法测量坡面含沙水流的流速具有一定的可行性,常采用坡度、流量的幂函数计算坡面流流速,一般认为流速与含沙量呈反比;能量是坡面流水动力学特性的综合体现,一般认为随着含沙量的增加,坡面流能量消耗呈增加趋势。在此基础上提出了目前研究中存在的不足之处,为分析坡面侵蚀机理、完善坡面侵蚀模型提供理论依据。  相似文献   

13.
This paper reports our review of research on domestic climate extremes conducted by US physical geographers over the past 15?years. Sections cover extremes in wind, precipitation, lightning, and temperature, as well as derivative climate extremes (droughts, floods, and storm surges). Themes considered include: the spatial and temporal distribution of the climate extreme; its implications for our understanding of the physical processes that produce it; the spatial and temporal distributions of the extreme’s economic and human costs; lessons for assessment, policy, and management; and scale. We conclude that most of the works reviewed inadequately address the human basis of vulnerability to climate extremes, and encourage physical geographers to work with colleagues from the other subfields of geography and the social sciences to develop the holistic understanding of vulnerability needed to effectively adapt to the more extreme climate projected under climate change.  相似文献   

14.
汶川地震造成泥石流形成条件的改变,其次生灾害堰塞湖的危害已开始显现。如何对震后潜在性泥石流堰塞湖进行判识,成为迫切需要解决的问题。选取岷江上游映秀至汶川段为研究区,通过分析震后泥石流形成条件的变化、典型泥石流堰塞湖的危害及松散物质储量,选取潜在性泥石流堰塞湖的判识指标,利用模糊物元可拓模型,建立潜在性泥石流堰塞湖的综合判识模式。通过判识,研究区形成泥石流堰塞湖可能性高的一级支沟有17条,主要集中分布在映秀镇至草坡乡段,此段将是今后受堰塞湖危害的高危地段。  相似文献   

15.
Increased understanding of transpiration by dryland oaks in the woodlands of the south-western United States and northern Israel has been obtained from studies in the two countries. Transpiration was estimated in both studies by the heat pulse velocity (HPV) method in stands of Quercus emoryi, a drought-deciduous species growing in the south-western United States, and stands supporting Q. ithaburensis, a deciduous oak, and Q. calliprinos, an evergreen oak, in northern Israel. Estimates of daily transpiration rates by individual trees and annual transpiration amounts on a stand basis indicate that depending on the species and stand structure, 45–80% of the precipitation inputs to the stands sampled are represented by transpiration component of the respective hydrologic cycles.  相似文献   

16.
The methane hydrate stability zone beneath Sverdrup Basin has developed to a depth of 2 km underneath the Canadian Arctic Islands and 1 km below sea level under the deepest part of the inter-island sea channels. It is not, however, a continuous zone. Methane hydrates are detected in this zone, but the gas hydrate/free gas contact occurs rarely. Interpretation of well logs indicate that methane hydrate occurs within the methane stability zone in 57 of 150 analyzed wells. Fourteen wells show the methane hydrate/free gas contact. Analysis of the distribution of methane hydrate and hydrate/gas contact occurrences with respect to the present methane hydrate stability zone indicate that, in most instances, the detected methane hydrate occurs well above the base of methane hydrate stability. This relationship suggests that these methane hydrates were formed in shallower strata than expected with respect to the present hydrate stability zone from methane gases which migrated upward into hydrate trap zones. Presently, only a small proportion of gas hydrate occurrences occur in close proximity to the base of predicted methane hydrate stability. The association of the majority of detected hydrates with deeply buried hydrocarbon discoveries, mostly conventional natural gas accumulations, or mapped seismic closures, some of which are dry, located in structures in western and central Sverdrup Basin, indicate the concurring relationship of hydrate occurrence with areas of high heat flow. Either present-day or paleo-high heat flows are relevant. Twenty-three hydrate occurrences coincide directly with underlying conventional hydrocarbon accumulations. Other gas hydrate occurrences are associated with structures filled with water with evidence of precursor hydrocarbons that were lost because of upward leakage.  相似文献   

17.
欧美景观地理学的新进展及其启示   总被引:4,自引:0,他引:4  
文章从文化景观、景观概念、景观解释、景观与文化、景观政治学等方面阐述了欧美景观地理学的新进展。目前,欧美文化地理学正在重新整合,文化景观研究是其核心。针对景观的不同用法(艺术上的,社会科学上的),提出了4种专业化的景观解释模型。景观政治学是新文化地理学的关键建设领域,甚至有人把它当作景观解释的中心。地理学者对文学的兴趣日益增加,并将不同的文学形式看作是研究景观意义的途径。  相似文献   

18.
Increases in sea surface temperature have led to distributional changes in many commercially exploited fish species. These changes have already led to conflict over mackerel fisheries, arising from demand for fair resource apportionment and desire to manage the fishery sustainably. In order to develop adaptable management strategies for complex ocean fishery systems, policymakers and researchers must move beyond a reactive producer–consumer relationship to develop proactive, supportive collaborations. The history of U.S. national fisheries management is presented as an example of this transition. Building cooperative capacity over the last two centuries has lead to a more systematic understanding of the oceans, and has led to success in reducing the number of overfished stocks. Similar development of cooperation between policymakers and researchers on an international scale may be the surest way to develop management strategies adaptable enough to withstand challenges posed by future climate change.  相似文献   

19.
李锦育 《山地学报》2005,23(3):327-335
由于近年来人类的活动空间渐往山区发展,使得原本植生条件良好的山坡地,在不当的开发情形下,变成土石流发生的敏感地区,导致灾害不断的传出。拟就土石流之定义,及导致土石流发生机制的各项因子进行探讨,其中包括自然成因:地质、地形和水文等条件,以及人类活动对土石流形成所造成的影响,并依据土石流之各项特性整理,提出有关土石流之防治及预警系统之工法。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号