首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The reversed natural remanent magnetisation (NRM) of the volcanic features at Laschamp and Olby (Chaîne des Puys, Auvergne, France) is commonly believed to document the youngest excursion of the geomagnetic field during the present Brunhes epoch. Recent radiometric dating determines the age of these lavas to be 35000–45000 y. Continuous thermal demagnetisation indicates that under laboratory conditions the NRM of many Olby samples undergoes complete or partial self-reversal; to a lesser extent this is also true for the Laschamp material. Thus self-reversal may be another possible explanation of the reversed NRM directions. Magnetic, optical and microprobe analyses suggest that the self-reversal mechanism is based upon magnetostatic interaction between differently oxidised titanomagnetite phases.  相似文献   

2.
Petro-and paleomagnetic methods are applied to the study of the lower part of the Early Pleistocene Tuzla section on the Black Sea coast of the Taman Peninsula, This part of the section is composed of marine and lagoonal sediments deposited over the time interval 120–70 ka. The measured curves of the variation in the geomagnetic field inclination reveal an anomalous direction dated at ~110 ka that coincides with a similar anomalous direction in the Eltigen section (Ukraine) correlating with the Blake paleomagnetic event. The significant correlation between the time series NRM0.015/SIRM0.015 (Tuzla section) and the world composite Sint-800 curve indicates that the curve NRM0.015/SIRM0.015 in the interval 110–70 ka actually reflects the variation in the relative paleointensity of the geomagnetic field.  相似文献   

3.
Petro-and paleomagnetic methods are applied to the study of the upper part of the Late Pleistocene Tuzla section (Azov coast of the Taman Peninsula) composed of continental sediments and dated at 50–10 ka. The detailed curves of the angular components of the geomagnetic field obtained in this study display an anomalous direction coinciding in time (~25–35 ka) with an anomalous horizon discovered in rocks of the Roxolany section (Ukraine). According to the world time scale of geomagnetic excursions, the anomalous direction correlates with the Mono Lake excursion. A significant correlation between the time series NRM0.015/SIRM (Tuzla section) and NRM250/KB (Roxolany section) in the interval 50–10 ka and the world composite curves VADM-21 and Sint-800 implies that, in this time interval, the curve NRM0.015/SIRM reflects the variation in the relative paleointensity of the geomagnetic field.  相似文献   

4.
We carried out an integrated paleomagnetic, rock-magnetic and paleointensity study of Miocene volcanic succession from the trans-Mexican volcanic belt (TMVB) north of Guadalajara. A total of 37 consecutive basaltic lava flows (326 oriented standard paleomagnetic cores) were collected at Lazo locality. Continuous susceptibility measurements with temperature and hysteresis experiments yield in most cases reasonably reversible curves with Curie points close to that of pseudo-single-domain magnetite. Two geomagnetic reversals were observed in the 300 m thick composite section. Paleosecular variation was lower than the one observed in general during Miocene. It appears that the volcanic units have been emplaced during a relatively short time span of about 1 Ma. The mean paleomagnetic directions obtained from this study do not differ significantly from that expected for the middle Miocene. The mean paleomagnetic direction calculated from all data is I=31.1°, D=354.6°, k=124 and 95=2.1°, N=37. Seventy-two samples with apparently preserved primary magnetic mineralogy and without secondary magnetization, mostly belonging to reverse polarity chron were pre-selected for Thellier paleointensity determination. The flow-mean paleointensity values are ranging from 22.4±3.4 to 53.8±6.0 μT and the corresponding virtual dipole moments (VDMs) are ranging from (5.4±0.8) to (12.0±1.4)×1022 A m2. This corresponds to mean value of (7.7±2.2)×1022 A m2, which is close to present day geomagnetic field strength. Altogether, our data suggest the existence of relatively high geomagnetic field strength undergoing low fluctuations.  相似文献   

5.
The lower part of the Roxolany section (Ukraine) is studied, and paleomagnetic and petromagnetic characteristics of rock samples are obtained for the time interval 300-75 ka. Detailed curves of variations in angular parameters of the geomagnetic field are constructed in the entire time interval, and curves of variations in the relative paleointensity are obtained for the interval 300-180 ka. Using the values of the angular parameters and the deviations of the virtual geomagnetic pole from the position of the stationary field, anomalous directions compatible with the Jamaica excursion are identified in the intervals 250-249 and 221-220 ka. The geomagnetic field evolution is studied by methods of wavelet analysis, and the field generation process is shown to vary in the interval 300-180 ka.  相似文献   

6.
Petromagnetic and magnetostratigraphic characteristics are obtained for the Tetritskaro section. The boundary layer at the Mesozoic/Cenozoic (K/T) boundary is fixed primarily by an abrupt rise in the paramagnetic magnetization (total Fe concentration) and, to a lesser degree, by an increase in the concentration of such magnetic minerals as goethite, hemoilmenite, and magnetite. The along-section distribution of titanomagnetite of volcanic origin and metallic iron of cosmic origin does not correlate with the K/T boundary and lithologic properties of the sediments.The boundary of the Mesozoic and Cenozoic geological eras lies within the reversed polarity chron C29r and is marked by an abrupt rise in the geomagnetic field paleointensity and an instability of paleomagnetic directions, rather than by a polarity change. The accumulation time of the boundary clay layer is about 1.5–2 kyr, while abrupt changes in the paleointensity and direction of the geomagnetic field encompass 30–40 kyr. Such long occurrence intervals of the events in question cannot be related to a short-term impact phenomenon.  相似文献   

7.
The Early Cretaceous may be considered a key period for understanding the evolution of the Earth’s magnetic field. Some still unsolved problems are related to the mode of paleosecular variation (PSV) of the Earth’s magnetic field before and during the Cretaceous Normal Superchron. We report here a detailed rock-magnetic, paleomagnetic and paleointensity investigation from 28 lava flows (331 standard paleomagnetic cores) collected in the Argentinean part of the Parana Flood Basalts (Formation Posadas) in order to contribute to the study of PSV during the early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average paleofield direction is precisely determined from 26 sites, which show small within-site dispersion and high directional stability. Five sites show evidences for the self-reversal of thermoremanent magnetization. 23 sites yielded normal polarity magnetization and only 3 are reversely magnetized. Moving windows averages were used to analyze the sequential variation of virtual geomagnetic pole’s (VGP) axial positions. Interestingly, the axial average VGP path traces an almost complete cycle around the geographical pole and passes near the location of all previously published Paraná Magmatic Province poles. Both paleomagnetic poles and average VGP paths are significantly different from the pole position suggested by fixed hotspot reconstructions, which may be due to true polar wander or the hotspot motion itself. Only 15 samples from 5 individual basaltic lava flows, yielded acceptable paleointensity estimates. The site mean paleointensities range from 25.2 ± 2.2 to 44.0 ± 2.2 μT. The virtual dipole moments (VDMs) range from 4.8 to 9.9 × 1022 Am2. This correspond to a mean value of 7.7 ± 2.1 × 1022 Am2 which is 96% of the present day geomagnetic field strength. These intensities agree with the relatively high values already reported for Early Cretaceous, which are consistent with some inferences from computer simulations previously published.  相似文献   

8.
The reverse paleomagnetism of the lava flows of Laschamp and Olby, already discovered by Bonhommet and Babkine, is confirmed. The ages of these flows, measured by14C, thermoluminescence and K-Ar dating are respectively36,000 ± 4000 and42,000 ± 5000years. VGP's comparison of the “Laschamp event” with those of the 30,000-year Lake Mungo excursion does not show evidence of coincidence between these two events.  相似文献   

9.
The data on the amplitude of variations in the direction and paleointensity of the geomagnetic field and the frequency of reversals throughout the last 50 Myr near the Paleozoic/Mesozoic and Mesozoic/Cenozoic boundaries, characterized by peaks of magmatic activity of Siberian and Deccan traps, and data on the amplitude of variations in the geomagnetic field direction relative to contemporary world magnetic anomalies are generalized. The boundaries of geological eras are not fixed in recorded paleointensity, polarity, reversal frequency, and variations in the geomagnetic field direction. Against the background of the “normal” field, nearly the same tendency of an increase in the amplitude of field direction variations is observed toward epicenters of contemporary lower mantle plumes; Greenland, Deccan, and Siberian superplumes; and world magnetic anomalies. This suggests a common origin of lower mantle plumes of various formation times, world magnetic anomalies, and the rise in the amplitude of geomagnetic field variations; i.e., all these phenomena are due to a local excitation in the upper part of the liquid core. Large plumes arise in intervals of the most significant changes in the paleointensity (drops or rises), while no correlation exists between the plume generation and the reversal frequency: times of plume formation correlate with the very diverse patterns of the frequency of reversals, from their total absence to maximum frequencies, implying that world magnetic anomalies, variations in the magnetic field direction and paleointensity, and plumes, on the one hand, and field reversals, on the other, have different sources. The time interval between magmatic activity of a plume at the Earth’s surface and its origination at the core-mantle boundary (the time of the plume rise toward the surface) amounts to 20–50 Myr in all cases considered. Different rise times are apparently associated with different paths of the plume rise, “delays” in the plume upward movement, and so on. The spread in “delay” times of each plume can be attributed to uncertainties in age determinations of paleomagnetic study objects and/or the natural remanent magnetization, but it is more probable that this is a result of the formation of a series of plumes (superplumes) in approximately the same region at the core-mantle boundary in the aforementioned time interval. Such an interpretation is supported by the existence of compact clusters of higher field direction amplitudes between 300 and 200 Ma that are possible regions of formation of world magnetic anomalies and plumes.  相似文献   

10.
The record of the Earth’s magnetic field intensity during the past (paleointensity) carries important information about the geodynamo and the state of the Earth’s interior that is not contained in the record of its paleodirection. To determine what the critical factors in obtaining reliable estimate of paleointensity are, we present new results of a paleointensity study of the 1955 and 1960 Kilauea volcano lava flows, from the Big Island of Hawaii. Rock magnetic measurements on representative hand samples from each flow in conjunction with reflected light microscopy observations show the primary carriers of remanence to be pseudo-single domain titanomagnetite with various titanium contents. Paleointensity samples (small fragments previously embedded into salt pellets) were subjected to the Thellier-Coe experimental procedure. Fourteen temperature steps were distributed over the entire temperature range used (ambient temperature to 570°C). Control heating steps (commonly referred to as partial thermo-remanent magnetization — pTRM checks) were also conducted each third double heating step. Mean field intensity value (36.6 ± 0.7 μT) retrieved from 3 reliable site mean determinations reproduces the expected value within 1.1%. With the knowledge of the rock magnetic characteristics of the samples and the strength of the geomagnetic field during cooling of the lava, our investigation suggests that the Hawaiian lavas can faithfully record the local geomagnetic field and confirms that the Thellier-Coe type techniques are suitable on historical lava flows to yield reliable absolute paleointensity determinations. The variations in direct field measurements and in lab paleofield determinations may reflect local heterogeneities of the lava or influence of very local field anomalies due to the volcanic underlying terrain. These results underscore the importance that a better understanding of intensity results of historical lava flows is still required if reliable paleointensity determinations of older periods, for which we do not know the answer, are sought.  相似文献   

11.
The paleosecular variation (PSV) and polarity transitions are two major features of the Earth’s magnetic field. Both PSV and reversal studies are limited when age of studied units is poorly constrained. This is a case of Central and western Mexico volcanics. Although many studies have been devoted to these crucial problems and more than 200 paleomagnetic directions are available for the last 5 Ma, only few sites were dated directly. This paper presents new paleomagnetic results from seventeen independent cooling units in the Michoacán-Guanajuato Volcanic Field (MGVF) in western Mexico. Twelve sites are directly dated by 40Ar/39Ar or K-Ar methods and span from 2.78 to 0.56 Ma. The characteristic paleodirections are successfully isolated for 15 lava flows. The mean paleodirection (inclination I and declination D) obtained in this study is I = 28.8°, D = 354.9°, and Fisherian statistical parameters are k = 28, α95 = 7.3°, N=15, which corresponds to the mean paleomagnetic pole position Plat = 83.9°, Plong = 321.6°, K = 34, A95 = 6.6°. The paleodirections obtained in present study compiled with those, previously reported from the MGVF, are practically undistinguishable from the expected Plio-Quaternary paleodirections. The paleosecular variation is estimated through the study of the scatter of the virtual geomagnetic poles giving SF = 15.9 with SU =21.0 and SL = 12.7 (upper and lower limits respectively). These values agree reasonably well with the recent statistical Models. The oldest sites analyzed (the Santa Teresa and Cerro Alto) yield normal polarity magnetizations as expected for the cooling units belonging to the Gauss geomagnetic Chron. The interesting feature of the record comes from lava flows dated at about 2.35 Ma with clearly defined normal directions. This may point out the possible existence of a normal polarity magnetization in the Matuyama reversed Chron older than the Reunion and may be correlated to Halawa event interpreted as the Cryptochron C2r.2r-1. Another important feature of the geomagnetic record obtained from the MGVF is the evidence of fully reversed geomagnetic field within Bruhnes Chron, at about 0.56 Ma corresponding to the relative paleointensity minimum of global extent found in marine sediments at about 590 ka.  相似文献   

12.
Stable reversed remanence carried by pseudo-single-domain magnetite shows systematic direction changes in three thick ( 70m) Eocene basalt flows from the Absaroka Mountains of Wyoming. Three cores were collected at each of 24 sites in the lower flow, 26 sites in the middle flow, and nine sites in the upper flow. Cores in the two lower flows were oriented by sun compass and in the upper flow with a magnetic compass. Although remanent directions do not change smoothly through the entire thickness of the flows, portions of the record indicate that the field direction was changing as rapidly as 0.5° per year during remanence acquisition. Rough paleointensity estimates suggest that this behavior occurred while the field was in a stable reversed state rather than during a transitional period. Paleomagnetic studies of flows should avoid sampling the upper parts, because the declination record may be distorted by rotations of portions of the crust.  相似文献   

13.
The composition, granulometry data, and concentration of grains that carry the natural remanent magnetization (NRM) are studied in the bottom 6.5 meters of the loess-soil deposits of the Pekla section (Azov coast, Krasnodar region). It was shown that these strata, which correspond to the 9th–11th marine oxygen isotope stages (MIS) and cover the time interval ∼425–300 ka, are suitable for further paleomagnetic investigation. The deposits in the upper portion of the Inzhavino paleosoils (Likhvin Interstadial) contain the records of anomalous deviations of the direction of magnetization from the dipole field at the sampling site. The studied interval was sampled by taking two hand blocks from four sampling levels, which minimizes the errors due to the specimen cutting. This anomaly dated ∼300 ka possibly corresponds to the Biva-II geomagnetic excursion. However, the studies of implications of anisotropy in magnetic susceptibility (AMS) for the direction of natural remanent magnetization (NMR) have shown that parts of the samples from the Inzhavino paleosoils and the underlying loess horizon are magnetically anisotropic, which is characteristic for biogenic magnetite grains, while other parts of the samples exhibit plane anisotropy typical for natural sedimentary structures. A weak correlation between the time series of averaged curves of relative paleointensity, NRM20/ARM20 (and NRM20/K) for the loess horizons of the Pekla section and the global composite reference curve of relative paleointensity, Sint-800, in the time intervals 200–130 ka and 370–320 ka indicates that the paleomagnetic records have been imprinted not only on the detritic magnetic grains but also on the grains produced by chemical reactions and the life processes of bacteria.  相似文献   

14.
晚更新世以来以一系列地磁漂移事件是区域地层对比和确定沉积物年代框架的重要工具.但是在海相沉积物中,识别这些地磁漂移事件多依赖相对磁场强度(RPI)的变化,在地磁方向异常方面鲜有报到,从而影响对这些事件可靠性的讨论.本文选择南海南部巽他陆架附近重力活塞钻孔BKAS2PC的沉积物,进行系统的岩石磁学和古地磁研究,获得该钻孔沉积记录的RPI和磁倾角变化信息.岩石磁学及扫描电镜结果表明沉积物的原生主要载磁矿物为单畴(SD)和假单畴(PSD)钛磁铁矿.在一些层位,沉积后发生的还原作用形成胶黄铁矿等铁硫化物.磁性矿物的浓度和粒度等参数呈现显著的两阶段变化特征,上部(约220 cm以上)含量低而粒度细,下部含量高但粒度相对较粗,整体上均在一个数量级范围内波动.样品的交变退磁特征显示当交变场超过60 mT时,受胶黄铁矿影响产生旋转磁化,剩磁强度反而上升.因此,在20~60 mT之间确定原生特征剩磁,并把RPI定义为NRM_((20-40)mT)/ARM_((20-40)mT).通过~(14)C限定,并与其他有良好年代控制的相对磁场强度曲线进行对比,建立了钻孔的年代框架.结果显示,钻孔沉积物记录了几次显著的地磁漂移事件,这为联合应用RPI与磁场方向异常构建海相沉积物年代学框架提供了新的依据.  相似文献   

15.
One of the reasons for performing paleomagnetic studies is to determine whether the geomagnetic field remains dipolar during a polarity transition. Data on 23 field reversals of Recent, Tertiary and Upper Mesozoic age are examined with regard to the longitudinal and latitudinal distribution of paleomagnetic poles during a polarity change. Both frequency distributions of the transitional pole positions are not random. The results suggest that some field reversals are characterized by the rotation of the dipole axis in the meridional plane and show that two preferential meridional bands of polarity transitions exist centered on planes through 40°E–140°W and 120°E–60°W respectively. The latitudinal distribution of transitional paleopoles shows that there is a decrease in the number of observed poles with decreasing latitude. This is interpreted as the result of an acceleration in the motion of the dipole axis when it approaches the equator. Comparison of transitional velocities and paleointensity magnitudes reveals that the dipole moment is very weak only for a short part of the transitional period when the paleopole position lies within the latitudes of 10°N and 10°S. The overall conclusion is that the geomagnetic field retains its dipolar character during polarity changes.  相似文献   

16.
Representative paleomagnetic collections of Lower Cambrian rocks from the northern and eastern regions of the Siberian platform are studied. New evidence demonstrating the anomalous character of the paleomagnetic record in these rocks is obtained. These data confidently support the hypothesis (Pavlov et al., 2004) that in the substantial part of the Lower Cambrian section of the Siberian platform there are two stable high-temperature magnetization components having significantly different directions, each of which is eligible for being a primary component that was formed, at the latest, in the Early Cambrian. The analysis of the world’s paleomagnetic data for this interval of the geological history shows that the peculiarities observed in Siberia in the paleomagnetic record for the Precambrian–Phanerozoic boundary are global, inconsistent with the traditional notion of a paleomagnetic record as reflecting the predominant axial dipole component of the geomagnetic field, and necessitates the assumption that the geomagnetic field at the Proterozoic–Phanerozoic boundary (Ediacaran–Lower Cambrian) substantially differed from the field of most of the other geological epochs. In order to explain the observed paleomagnetic record, we propose a hypothesis suggesting that the geomagnetic field at the Precambrian–Cambrian boundary had an anomalous character. This field was characterized by the presence of two alternating quasi-stable generation regimes. According to our hypothesis, the magnetic field at the Precambrian–Cambrian boundary can be described by the alternation of long periods dominated by an axial, mainly monopolar dipole field and relatively short epochs, lasting a few hundred kA, with the prevalence of the near-equatorial or midlatitude dipole. The proposed hypothesis agrees with the data obtained from studies of the transitional fields of Paleozoic reversals (Khramov and Iosifidi, 2012) and with the results of geodynamo numerical simulations (Aubert and Wicht, 2004; Glatzmayer and Olson, 2005; Gissinger et al., 2012).  相似文献   

17.
The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous–Paleogene boundary and the termination of paleointensity bursts after the boundary of 45–40 Ma are not marked by explicit features in the geomagnetic polarity behavior.  相似文献   

18.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

19.
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal–Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of 11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below 500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.  相似文献   

20.
An updated analysis of the global paleomagnetic database shows that the frequency distributions of paleomagnetic inclinations for the Cenozoic and Mesozoic eras (younger than 250 Ma) are compatible with a random geographical sampling of a time-averaged geomagnetic field that closely resembles that of a geocentric axial dipole. In contrast, the frequency distributions of paleomagnetic inclinations for the Paleozoic and Precambrian eras (prior to 250 Ma) are over-represented by shallow inclinations. After discounting obvious secondary causes for the bias, such as from data averaging, sedimentary inclination error, inhomogeneous lithological distributions, and tropical remagnetization, we show that the anomalous inclination distributions for the Paleozoic and Precambrian can be explained by a geomagnetic field source model which includes a relatively modest (25%) contribution to the axial dipole from a zonal octupole field and an arbitrary zonal quadrupolar contribution. The apparent change by around 250 Ma to a much more axial dipolar field geometry might be due to the stabilization of the geodynamo from growth of the inner core to some critical threshold size, a gross speculation which would imply that either the threshold size was rather large or the inner core nucleated rather late in Earth history. Alternatively, if a geocentric axial dipole model is assumed or can eventually be demonstrated independently, the anomalous inclination distributions for the Paleozoic and Precambrian may reflect a tendency of continental lithosphere to be cycled into the equatorial belt, perhaps because geoid highs associated with long-term continental aggregates influence true polar wander.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号