首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ryo  Anma  Richard  Armstrong  Toru  Danhara  Yuji  Orihashi Hideki  Iwano 《Island Arc》2006,15(1):130-142
Abstract   The Late Miocene–Pliocene Taitao ophiolite is composed of a complete sequence of classic oceanic lithosphere and is exposed approximately 50 km southeast of the Chile triple junction, where the Chile Ridge subducts beneath the South American Plate. Gabbros and ultramafic rocks are folded into a complex pattern, but only evidence for block rotation has been reported in the overriding sheeted dyke complex. In the present study, sensitive high mass-resolution ion microprobe U–Pb and fission-track dating methods were applied to zircon crystals separated from gabbros and sheeted dykes. Two sets of radiometric ages of gabbros range between 5.9 ± 0.4 and 5.6 ± 0.1 Ma. These ages coincide within their error ranges and imply rapid intrusion and cooling of gabbros. The U–Pb age of a dacite dyke intruded into the sheeted dyke complex was determined to be 5.2 ± 0.2 Ma. These data indicate that the magmas of the Taitao ophiolite were formed during the 6 Ma Chile Ridge collision event and emplaced in a shorter period than previously thought. A short segment of the Chile Mid-oceanic Ridge must have been emplaced during the 6 Ma event.  相似文献   

2.
Since the 1980s, one of the important progresses in the study of the Qinling orogenic belt is marked by findings of numerous ophiolite zones[1—4]. On the basis of the former orogenic models of the Paleozoic colli-sional orogeny[1,5,6] and the Mesozoic collision[7—9], another orogenic evolution model from the Paleozoic subduction-collision along the Shangdan suture to the Mesozoic final collision orogeny along the Mianle suture[3,10], including the relicts of the Jining orogeny, has been pr…  相似文献   

3.
Major and trace elements are presented for the late Paleozoic radiolarian cherts, which were spatially associated with the NE Jiangxi ophiolite melange. These chert samples show relatively low SiO2 (78.40%-89.28%) and high Al2O3 (3.42%-11.02%). Low Si/Al ratios (6.3-23) and tight negative correlation between Si/Al and Al2O3 of the samples indicate that they are muddy cherts containing high and variable contents of pelitic detritus. Geochemically, they are characterized by Al2O3/(Al2O3+Fe2O3) = 0.51-0.90, shale-normalized Lan/Cen = 0.76-1.11, Ce/Ce* = 0.91-1.22, V<20μg/g, V/Y<2.6 and Ti/V>40, resembling those of cherts formed in the continental margin regimes. It is therefore concluded that these late Paleozoic radiolarian muddy cherts were most likely formed in a continental margin regime, and not genetically related to the ophiolite suite in NE Jiangxi. It is also unlikely that an oceanic basin existed between the Yangtze and Cathaysia blocks during the late Paleozoic.  相似文献   

4.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   

5.
Detailed studies indicate that Kangxian-Pipasi-Nanping tectonic zone is a complicated melange zone which includes many tectonic slabs of different origins. Ophiolite (MORB-type basalt), oceanic island tholeiite and alkaline basalt have been identified. Moreover, this tectonic melange zone is eastward connected with the Mianlue suture zone. The deformation characteristics, consisting components and volcanic rock geochemical features for the Kangxian-Pipasi-Nanping tectonic melange zone are much similar to those of the Mianlue suture zone and Deerni ophiolite. Therefore, the Kangxian-Pipasi-Nanping tectonic melange zone should be the westward extension part of the Mianlue suture zone. It indicates that the Mianlue suture zone had extended to the Nanping area.  相似文献   

6.
Major and trace element compositions of amphibolites and quartzose rocks in the 230-m-thick metamorphic sole underlying the mantle section of the Oman ophiolite in Wadi Tayin area were determined to investigate the chemical characteristics of the hydrous fluid released from subducted amphiboltie-facies slab. The fluid-immobile element compositions indicate that protoliths of these rocks are mid-ocean ridge basalt-like tholeiite and deep-sea chert, which is consistent with the idea that these rocks represent Tethyan oceanic crust overridden during the early, intraoceanic thrusting stage of the Oman ophiolite emplacement. The rare-earth element (REE) and high field-strength element concentrations of the amphibolites show limited variations, within a factor of two except for a few evolved samples, throughout transect of the sole. On the other hand, concentrations of fluid-mobile elements, especially B, Rb, K and Ba, in amphibolites are highly elevated in upper 30 m of the sole (> 600 °C in peak metamorphic temperature), suggesting the equilibration with evolved, B-Rb-K-Ba-rich fluids during prograde metamorphism. The comparison with amphibolites in the lower 150 m (500 to 550 °C) demonstrates that the trace element spectra of the fluids equilibrated with the high-level amphibolites may vary as a function of metamorphic temperature. The fluids are characterized by striking enrichments of B, Rb, K and Ba and moderate to minor enrichments of Sr, Li, Be and Pb. At higher temperature (up to 700 °C), the fluids become considerably enriched in light REE and Nb in addition to the above elements. The estimated trace element spectra of the fluids do not coincide with the compositions of basalts from matured intra-oceanic arcs, but satisfactorily explain the characteristics of the low-Pb andesites and boninites found in the Oman ophiolite. Compositional similarity between the boninites of Oman and other localities suggests that the fluids estimated here well represent the amphibolite-derived fluids involved in the magmatism of immatured, hot, shallow subduction zones.  相似文献   

7.
贾鸿瑞  魏东平 《地球物理学报》2021,64(10):3567-3575

智利三联点作为典型的RTT型三联点,伴随智利洋脊俯冲到南美大陆板块下方,通过建立纳兹卡—南极—南美—太平洋四板块系统,并基于GPS、地震滑移矢量、洋中脊扩展速率及转换断层方位角等观测资料,给出了前三个板块相对于太平洋板块的欧拉矢量,据此进一步得到了各板块两两之间的相对欧拉运动矢量.结果显示,整个智利海沟处,三联点以北表现为纳兹卡板块相对南美板块的约83.0 mm·a-1的近东向俯冲,快速下降到三联点以南的南极板块相对南美板块的约22.0 mm·a-1的东偏南俯冲,由于洋脊俯冲效应,智利三联点自5.3Ma以来,整体由南向北作迁移运动,同时因为智利洋脊被转换断层切割成多个小段,导致智利三联点的性质在RTT型与FTT型间不断转变,当智利三联点为FTT型时,其运动方向改变为反向自北向南迁移,使得部分地区会经历多段洋脊的重复俯冲,从而导致洋壳玄武岩多次经历800~900℃的温度条件和低压(10~20 km深度)下的部分熔融,使熔体与残留物从第一次相平衡后形成的中性岩石,在经历又一次的部分熔融后形成酸性岩,这也是我们在三联点交替向北向南迁移的位置,多处发现弧前酸性岩存在的重要原因.

  相似文献   

8.
Soichi  Osozawa 《Island Arc》1997,6(4):361-371
Abstract Ridge subduction and the resulting formation of a slab window interrupts volcanic arc-type igneous activity and causes uplift of the arc system. These implied diachronous relationships are examined by comparison of the temporal and spatial positions of ancient migrated trench-trench-ridge triple junctions and the distribution of subduction-related igneous and metamorphic rocks in Japan.  相似文献   

9.
Petrographic observations, and mineralogical and geochemical analyses, have revealed that the Hegenshan ophiolite is of mid-ocean ridge origin and has been subjected to dynamothermal metamorphism at medium P/T conditions. The metamorphism is characterized by a prograde change in paragenesis from the greenschist to epidote-amphibolite facies, with peak temperature conditions of 570-640°C at pressures of 4-10 kbar. The amphiboles formed by this metamorphism show K-Ar ages of 110-130 Ma. The metamorphic conditions and K-Ar ages suggest that the Hegenshan ophiolite is located at the suture between the Siberian and North China continental blocks, where the continental collision in this area took place in middle Mesozoic time. Given the temporal and spatial distribution of the igneous activity around the Da Hinggan Ling Mountains, it is suggested that the extensive Yanshanian magmatism in this region resulted predominantly from a southward subduction of an oceanic plate prior to collision. Alternatively, it may possibly have resulted from the collision itself, at the final stage.  相似文献   

10.
Soichi  Osozawa 《Island Arc》1993,2(3):142-151
Abstract Normal faults parallel to the trend of an active ridge are formed in the accretionary prism at trench-trench-ridge triple junction, due to continuous spreading of the subducted ridge. Normal faults are observed in the Nabae and Mugi sub-belts, accretionary zones formed by ridge subduction in the Shimanto Belt. Igneous and sedimentary dykes intrude through the previous normal faults. Using these fault and dyke data, intermediate principal axis of stress relating to the normal faulting is determined, and is fitted to the trend of the subducted ridge. Normal faults formed by ridge subduction are useful for plate reconstruction.  相似文献   

11.
Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A'nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur'ngoi diorite in the Kuhai-A'nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur'ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur'ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A'nyêmaqên suggests that the southern margin of the "Qilian-Qaidam-Kunlun" archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.  相似文献   

12.
Northwestern Ilocos Norte in Luzon, Philippines, exposes cherts, peridotite and a variety of metamorphic rocks including chlorite schist, quartzo‐feldspathic schist, muscovite schist and actinolite schist. These rocks are incorporated within a tectonic mélange, the Dos Hermanos Mélange, which is thrust onto the turbidite succession of the Eocene Bangui Formation and capped by the Upper Miocene Pasuquin Limestone. The radiolarian assemblages constrain the stratigraphic range of the cherts to the uppermost Jurassic to Lower Cretaceous. Stratigraphically important species include Eucyrtidiellum pyramis (Aita), Hiscocapsa acuta (Hull), Protunuma japonicus (Matsuoka & Yao), Archeodictyomitra montisserei (Squinabol), Hiscocapsa asseni (Tan), Cryptamphorella conara (Foreman) and Pseudodictyomitra carpatica (Lozyniak). The radiolarian biostratigraphic data provide evidence for the existence of a Mesozoic basinal source from which the cherts and associated rocks were derived. Crucial to determining the origin of these rocks is their distribution and resemblance with known mélange outcrops in Central Philippines. The mélange in the northwestern Ilocos region bears similarities in terms of age and composition with those noted in the western part of the Central Philippines, particularly in the islands of Romblon, Mindoro and Panay. The existence of tectonic mélanges in the Central Philippines has been attributed to the Early to Middle Miocene arc–continent collision. This event involved the Philippine Mobile Belt and the Palawan Microcontinental Block, a terrane that drifted from the southeastern margin of mainland Asia following the opening of the South China Sea. Such arc–continent collision event could also well explain the existence of a tectonic mélange in northwestern Luzon.  相似文献   

13.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


14.
Ladinian radiolarian fauna, including Muelleritortis, Baumgartneria, Oertlispongus, Paroertlispongus, Pseudoertlispongus, etc., was discovered from the siliceous rock of the Runiange Formation in the Xianshuihe belt, West Sichuan Province. Geochemical test on five samples from the siliceous rock indicates that SiO2 content varies in 71.16%-90.06% and Si/Al ratio, in 49-71, which shows that the siliceous rock contains more terrigenous mud sediments. The siliceous rock is characterized by the large ratios of Al2O3/(Al2O3+Fe2O3) (0.63-0.81) and Ti/V (>26), the low ratio of V/Y (<2.8), and low vanadium content (<23 μg/g), which are similar to the geochemical characteristics of continental margin siliceous rock. The Ce/Ce* ratios of the four samples vary in 1.02-1.47 and the LaN/CeN ratio, in 0.75-1.07, which imply that the siliceous rock was deposited in the continental margin basin. But only one sample is similar to the oceanic siliceous rock in REE. Turbidite-siliceous rock bearing radiolarian-basalt asse  相似文献   

15.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

16.
The middle sector of the Yarlung Zangbo suture zone stretches over 200 km long from Ngamring through Geding to Rinbung, roughly along Yarlung Zangbo River valley (Fig. 1). This belt resulted from the closure of the Tethyan ocean and the collision be- tween Indian plate and Lhasa block[1―8]. Lots of works demonstrated that rifting of the Tethyan basin in southern Tibet started from Triassic time. Initial oce- anic crust appeared in the Late Jurassic, and then ex- perienced a rapid sprea…  相似文献   

17.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

18.
帕米尔高原是五大山脉汇结之中心,被称为"西构造结".在此山高耸谷陡深是人迹罕至的无人区.应用稀少的地面重力和人工地震数据和卫星重力资料,以NNW和NEE向两条长达1620 km的十字交叉剖面,对帕米尔高原地区地壳深部结构与区域地质构造进行了研讨.帕米尔高原中心地区地壳厚度(莫霍界面深度)接近70 km,并在总体上呈向四周逐渐延展减薄(变浅)的总趋势,到帕米尔的周边地区减薄为50余km左右.这里是一个壳幔结构变异的构造强烈活动地域.  相似文献   

19.
The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock association of typical ophiolite sequence. The metaperidotite is depleted in light rare earth element (LREE), whereas the gabbro and meta-basalt from the studied ophiolite sequence, generated by the same parental magmas those have close affinity to the MORB (Mid-ocean ridge basalt), their REE and immobile elements patterns imply an ocean in the northern margin of the Yangtze plate during the Neoproterozoic period. The zircon LA-ICP-MS U-Pb dating for the gabbro yields a weighted mean age of 839.2±8.2Ma, suggesting that the basin occurred during the Neoproterozoic period.  相似文献   

20.
We have determined the rupture history of the March 28, 1964, Prince Williams Sound earthquake (M w=9.2) from long-period WWSSNP-wave seismograms. Source time functions determined from the long-periodP waves indicate two major pulses of moment release. The first and largest moment pulse has a duration of approximately 100 seconds with a relatively smooth onset which reaches a peak moment release rate at about 75 seconds into the rupture. The second smaller pulse of moment release starts at approximately 160 seconds after the origin time and has a duration of roughly 40 seconds. Because of the large size of this event and thus a deficiency of on-scale, digitizableP-wave seismograms, it is impossible to uniquely invert for the location of moment release. However, if we assume a rupture direction based on the aftershock distribution and the results of surface wave directivity studies we are able to locate the spatial distribution of moment along the length of the fault. The first moment pulse most likely initiated near the epicenter at the northeastern down-dip edge of the aftershock area and then spread over the fault surface in a semi-circular fashion until the full width of the fault was activated. The rupture then extended toward the southwest approximately 300 km (Ruff andKanamori, 1983). The second moment pulse was located in the vicinity of Kodiak Island, starting at 500 km southwest of the epicenter and extending to about 600 km. Although the aftershock area extends southwest past the second moment pulse by at least 100 km, the moment release remained low. We interpret the 1964 Prince William Sound earthquake as a multiple asperity rupture with a very large dominant asperity in the epicentral region and a second major, but smaller, asperity in the Kodiak Island region.The zone that ruptured in the 1964 earthquake is segmented into two regions corresponding to the two regions of concentrated moment release. Historical earthquake data suggest that these segments behaved independently during previous events. The Kodiak Island region appears to rupture more frequently with previous events occurring in 1900, 1854, 1844, and 1792. In contrast, the Prince William Sound region has much longer recurrence intervals on the order of 400–1000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号