首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
To better understand the vertical distribution of phytoplankton in the tropical and subtropical North Pacific, we used fast repetition rate fluorometry to investigate the photo-physiological condition of the phytoplankton assemblage in this region between February and March 2007. Along 155°E, between the equator and 24°N, the peak of fluorescence (F m), an indication of the deep chlorophyll maximum (DCM), was deeper than the top of the nitracline and occurred at the 2.4 ± 1.3 % (mean ± SD) light depth (relative to 0 m). The photochemical efficiency (F v/F m) and effective absorption cross-section of photosystem II (σPSII) were low at the surface but increased rapidly at depths between the top of the nitracline (40–138 m) and the DCM (70–158 m), an indication that the photo-physiological condition of the phytoplankton improved below the top of the nitracline. The depth of the maximal F v/F m [Z(F v/F m max)] was 18–32 m deeper than the DCM and corresponded to the 0.8 ± 0.2 % light depth. The values of F v/F m at the Z(F v/F m max) were 20 % higher than those at the DCM and averaged 0.48 ± 0.01. These results suggest that the phytoplankton assemblage beneath the DCM had a high potential photosynthetic performance capacity and was growing by using the very low ambient light in this region.  相似文献   

2.
This contribution presents results from a laboratory study investigating the fluid (gas/water) transport properties in the matrix system of the Scandinavian Alum Shale. The maturity of the organic matter of the shale samples ranged between 0.5 and 2.4% vitrinite reflectance (VRr). Gas (He, Ar, CH4) and water flow properties were determined at effective stresses ranging between 5 and 30 MPa and a temperature of 45 °C. The effects of different controlling factors/parameters on the fluid conductivity including permeating fluid, moisture content, anisotropy, heterogeneity, effective stress, pore pressure, and load cycling were analyzed and discussed. Pore volume measurements by helium expansion were conducted under controlled “in situ” effective stress conditions on a limited number of plugs drilled parallel and perpendicular to bedding.For Alum Shale the intrinsic permeability coefficients measured parallel and perpendicular to bedding (6·10−22–8·10−18 m2) were within the range previously reported for other shales and mudstones. Permeability coefficients were strongly dependent on permeating fluid, moisture content, anisotropy, effective stress and other sample-to-sample variations. The intrinsic/absolute permeabilities measured with helium were consistently, higher (up to five times) than those measured with argon and methane. Permeability coefficients (He, CH4) measured on a dry sample were up to six times higher than those measured on an “as-received” sample, depending on effective stress. The effect of moisture on measured permeability coefficients became more significant as effective stress increased. Permeability coefficients (He, CH4) measured parallel to bedding were up to more than one order of magnitude higher than those measured perpendicular to bedding. Parallel to bedding, all samples showed a nonlinear reduction in permeability with increasing effective stress (5–30 MPa). The stress dependence of permeability could be well described by an exponential relationship.  相似文献   

3.
Abstract

The complex circumstances of deep-sea mining result in unexpected accidents. When a pump abruptly stops working during mining in deep seas, several tons of minerals need to be refluxed. The commonly used computational fluid dynamics (CFD) method cannot simulate the required reflux because the volume of particles is neglected. However, this parameter can be calculated using Discrete Element Method-computational fluid dynamics (DEM-CFD). Using this method, the movement of particles and the location of the blockage becomes evident. In this study, DEM-CFD was used to simulate the reflux of nodules of diameter d?≤?10, d?≤?20, and d?≤?50?mm with a volume concentration of 8%. The results indicated that particles of diameter d?≤?50?mm cannot be refluxed and they are likely to accumulate at the junction of the impeller and vanes. Thus, the diameter of the particles needs to be controlled for effective functioning of the lifting pumps, and prevent deep-sea mining accidents.  相似文献   

4.
The reflectance and bireflectance of graptolite fragments (Silurian-Ordovician) from southeast Turkey were examined and the morphology was described using reflected light microscopy. The dispersion of maximum and minimum reflectance of graptolites sectioned parallel and perpendicular to the bedding was also determined. The graptolites were anisotropic and the anisotropy was stronger for sections perpendicular to the bedding. The graptolite fragments show two types of surface morphology: granular and non-granular. The granular type had a rough surface and granular anisotropy, the non-granular fragments showed a smooth surface and basic anisotropy. The fine internal structure of graptolite was evident under crossed-polars. The reflectance of graptolite increased with depth and was higher than other organic material, e.g. bitumen, found in the same sediment. The present study indicates that the reflectance of graptolite in sediment can be used to determine the maturity of the dediment.  相似文献   

5.
In this work, we examined the carbonate parameters, i.e. total alkalinity (TA), pH, and partial pressure of CO2 (pCO2), and the air–sea CO2 flux (FCO2) in the continental shelves of the southern Yellow Sea (SYS) and East China Sea (ECS), based on two field surveys conducted in April and August of 2011. Surface pCO2 showed significant spatial variations, ranging from 246 to 686 µatm in spring (average ± standard deviation = 379 ± 95 µatm) and from 178 to 680 µatm in summer (384 ± 114 µatm). During the spring cruise, the central SYS (pCO2 < 240 µatm) and the Changjiang estuary (pCO2 < 300 µatm) were under-saturated with CO2, while the southern SYS and the southwestern ECS were supersaturated (pCO2 = 420–680 µatm). In summer, however, the CO2-supersaturated waters (pCO2 = 380–680 µatm) occupied a relatively wide area, including the nearshore of the SYS and the Changjiang estuary, whereas pCO2-deficient water (pCO2 = 220–380 µatm) was observed only at the offshore ECS. In general, the entire SYS and ECS area behaved as a sustained CO2 sink, with average FCO2 of ?3.9 and ?2.1 mmol m?2 d?1 in spring and summer, respectively. Phytoplankton production was the driving force for CO2 absorption, especially during the spring cruise. In addition, we found that typical water mixing processes and decomposition of terrestrial material were responsible for the release of CO2 in three turbidity maximum regions.  相似文献   

6.
The vertical distributions of excess 210Pb and fall out 239, 240Pu imply a uniform sedimentation rate of 1·4–1·6 cm year?1 from 0 to 105–110 cm. This sediment accumulation rate is compatible with sulfate reduction rate data from this location. Below 70 cm only ‘aged’ refractory carbon is present (CR = 1·8% C) with an age of approximately 2400 years. This phase is present in a number of locations across Long Island Sound. Planktonic carbon (CP) is present above the 60–67 cm horizon. A value of 1·0 for AP (14C activity) at 32–37 cm was taken, AP = 1·285 was used for contemporary plankton. This was obtained by correcting the measured AP of a plankton tow sample for admixed refractory carbon. These values were then used to calculate CR, CP and CF (fossil carbon) at 32–37 cm and 6–12 cm. The only values compatible with the known sulfate reduction rate data are CR equal to pre 60–67 cm levels (1·6–1·8% C), CF being 0·3% C at both depths, and CP decreasing with depth from 0·3 to 0·4% C at 6–12 cm to close to zero at 32–37 cm.  相似文献   

7.
The physical and chemical changes associated with the thermal maturation of organic-rich shale have affected the paleomagnetic and rock magnetic characteristics of the Devonian Duvernay Formation in the Western Canada Sedimentary Basin. This formation has several lithofacies that correspond to deposition in platform, slope and deeper water settings under varied redox conditions. Shale, laminated mudstone and some massive mudstone facies show evidence of magnetic changes associated with maturation but wackestone, packstone and some massive mudstone facies appear to be unaffected by the process. Rock magnetic evidence suggests that thermal maturation induces a change in the magnetization carrier from magnetite and hematite to solely magnetite.The packstone and wackestone facies commonly show a reversed characteristic magnetization with a paleopole at 194°E, 70°N (A95=13.2) of Late Cretaceous-age. Shale and laminated mudstone facies in immature areas of the basin have inclination-only characteristic remanent magnetization (ChRM) means that range from 55 to 67 °C, requiring a pre-Cretaceous magnetization age. Shale and laminated mudstone facies in mature areas of the basin have a much steeper ChRM in direction ranging from 77 to 83 °C. Their very steep nature suggests that step demagnetization has not completely removed a drilling-induced remanence in some wells.  相似文献   

8.
The Middle Eocene deposits in the Fayoum Ranges are composed of complex alternative clastic (claystone and sandstone) and carbonate (limestone and dolostone) facies and dominated carbonate (limestone) facies. Facies are arranged mainly in regression and shallowing upward (emergence) cycles and sequences. Field stratigraphic and microfacies analysis of the study area permits recognition of four major sequences, reflecting 3rd-order cycles. Depositional sequences and cycles are bounded by subaerial erosive surfaces or caliche deposits, ferruginous crust, and by their correlative conformities. Sequence-1 consists of two shallowing-upward cycles (dominate carbonate facies), each of which starts with nummulitic wackestone, capped with nummulitic packstone including Globigerinatheka subconglobata subconglobata biozone. These cycles were deposited under tropical to subtropical conditions as evidenced by the carbonate nature of the rocks and the abundance of nummulites, which need warm conditions for their flourishing. Sequence-2 consists of four emergence cycles based with claystone and capped with wackestone including Morozovella lehneri biozone. The duration (Ma) of sequence-2 (Morozovella lehneri zone) is 3.05 Ma (44.25 Ma for the upper of TA3 3.3 to 41.2 Ma for the lower of TA3 3.5). Sequence-3 includes three rock units (includes Trucorotaloides rohri biozone). The lower unit involves lowstand systems tract, the middle unit contains transgressive systems tract and the upper rock unit includes highstand systems tract. The lowstand systems tract consists of emergence cycles of mixed clastic- carbonate facies, clays at the base and capped with wackestone and packstone facies. The transgressive systems tract consists of dominant carbonate facies, wackestone at the base and capped with packstone facies. Sequence 4 involves transgressive systems tract. The duration of both sequence-3 and sequence 4 has been estimated as 1.8 Ma.  相似文献   

9.
Future exploration in lower Miocene sandstones in the Gulf of Mexico will focus increasingly at depths greater than 4.5 km, and reservoir quality will be a critical risk factor in these deep to ultradeep reservoirs. The goal of this study was to understand the variation in reservoir quality of lower Miocene sandstones across the western Gulf of Mexico. To do this, we examined regional variation in detrital mineral composition, diagenesis, and reservoir quality in five areas: (1) Louisiana, (2) upper Texas coast, (3) lower Texas coast, (4) Burgos Basin, Mexico, and (5) Veracruz Basin, Mexico using petrographic and petrophysical data from depths of 0.9–7.2 km.There are strong variations in mineralogical composition within the study area. Lower Miocene sandstones from offshore Louisiana have an average composition of quartz = 86%, feldspar = 12%, and rock fragments = 2% (Q86F12R2). Feldspar and rock-fragment content increase southward as source areas shifted to include volcanic and carbonate rocks. Composition of samples from offshore Texas ranges from Q67F24R9 in the upper Texas coast to Q58F24R19 in the lower Texas coast. Lower Miocene sandstones from the onshore Burgos Basin, northern Mexico, have an average composition of Q54F22R23, whereas sandstones from the Veracruz Basin, southern Mexico, contain the highest proportion of rock fragments, Q33F12R55. Main diagenetic events in quartz-rich lower Miocene sandstones in Louisiana were mechanical compaction and precipitation of quartz cement. Compactional porosity loss increased to the south with increasing rock-fragment content. Calcite is the most abundant cement in the south and is strongly related to reservoir quality loss.At moderate burial depths, the best reservoir quality occurs in quartz-rich sandstones in Louisiana and decreases with increasing lithic content in Texas and Mexico. Porosity is higher in Louisiana and upper Texas than in lower Texas and Mexico at all depths and temperatures, but at depths >5 km and temperatures >175 °C, porosity differences are lessened. The lower Miocene sandstone trend in the western Gulf of Mexico from Louisiana to Mexico is an example of the importance of variation in detrital mineralogy as a control on diagenesis and reservoir quality.  相似文献   

10.
Facies and diagenetic heterogeneities in carbonate reservoir rocks affect both, fracture distribution and fracture permeability. Many studies focussed on fracture patterns in limestone–marl alternations, as e.g. fluid flow models, are based on laterally continuous beds. Here we examine 4010 fractures in multiple layers of limestone–marl alternations using a modified scan-line method. The studied successions belong to the Blue Lias Formation (Hettangian–Sinemurian), exposed on the coast of the Bristol Channel, United Kingdom. We combine methods of sedimentology and structural geology with rock physics to gain a better understanding of the role of facies, diagenesis and petrophysical properties (tensile and compressive strength, hardness, porosity) on the distribution of fractures (fracture orientation, density, spacing and height). Fracture distribution varies significantly despite similar bed thicknesses, indicating that planar bedding planes (i.e. well-bedded limestones, WBL) and beds with bedding plane irregularities (i.e. semi-nodular limestones, SNL) must be distinguished. SNL show higher percentages of non-stratabound fractures (67%) while they are more stratabound in WBL (57%). Additionally, beds with variable bed thicknesses (in scale of 15 m long beds) exhibit a wide range of fracture spacing, whereas fractures in beds with more continuous bed thicknesses are more regularly spaced. Considering all lithologies, the percentage of non-stratabound fractures increases proportionally with CaCO3 content. Three subsections studied in detail reveal different main sedimentological and diagenetic features (from early lithified over differentially compacted to physically compacted). All of them are characterised by dissimilar percentages of stratabound and non-stratabound fractures in limestone beds and marl interbeds. Our findings demonstrate that the distribution of fractures in individual well-bedded limestones is not necessarily representative for successions of limestone–marl alternations; multiple layers should therefore be studied in outcrop analogues as basis for fluid flow models of reservoirs composed of such lithologies.  相似文献   

11.
《Marine Chemistry》1987,20(4):327-336
The distribution coefficient (λMg) of Mg2+ ions between calcite and solution was found to be 0.012 ± 0.001 (10°C), 0.014 ± 0.001 (15°C), 0.019 ± 0.001 (25°C), 0.024 ± 0.001 (30°C), 0.027 ± 0.001 (35°C) and 0.040 + 0.003 (50°C). This indicates a remarkable dependence on temperature. The effect of the Mg2+/Ca2+ molar ratio in a parent solution on λMg for calcite is small, where the molar ratio lies in the range 0.04-2. However, the λMg value for aragonite tends to decrease with increasing Mg2+/Ca2+ ratio in the parent solution. The largest Mg content of calcite in the Ca(HCO3)2-Mg2+ → calcite system is around 2 mol% in the temperature range 10–50°C. Neither homogeneous nor heterogeneous distribution laws hold for aragonite precipitation, and the temperature effect on the coprecipitation of Mg2+ ions with aragonite is very small.  相似文献   

12.
This article presents a laboratory study of static behavior of silty-sand soils. The objective of this laboratory investigation is to study the effect of initial confining pressures and fines content on the undrained shear strength (known as liquefaction resistance) response, pore pressure, and hydraulic conductivity of sand–silt mixtures. The triaxial tests were conducted on reconstituted saturated silty-sand samples at initial relative density Dr = 15% with fines content ranging from 0 to 50%. All the samples were subjected to a range of initial confining pressures (50, 100, and 200 kPa). The obtained results indicate that the presence of low plastic fines in sand–silt mixture leads to a more compressible soil fabric, and consequently to a significant loss in the soil resistance to liquefaction. The evaluation of the data indicates that the undrained shear strength can be correlated to fines content (Fc), inter-granular void ratio (eg), and excess of pore pressure (Δu). The undrained shear strength decreases with the decrease of saturated hydraulic conductivity and the increase of fines content for all confining pressures under consideration. There is a relatively high degree of correlation between the peak shear strength (qpeak) and the logarithm of the saturated hydraulic conductivity (ksat) for all confining pressures.  相似文献   

13.
During TAiwan Integrated GEodynamics Research of 2009, we investigated data from thirty-seven ocean-bottom seismometers (OBS) and three multi-channel seismic (MCS) profiles across the deformation front in the northernmost South China Sea (SCS) off SW Taiwan. Initial velocity-interface models were built from horizon velocity analysis and pre-stack depth migration of MCS data. Subsequently, we used refracted, head-wave and reflected arrivals from OBS data to forward model and then invert the velocity-interface structures layer-by-layer. Based on OBS velocity models west of the deformation front, possible Mesozoic sedimentary rocks, revealed by large variation of the lateral velocity (3.1–4.8 km/s) and the thickness (5.0–10.0 km), below the rift-onset unconformity and above the continental crust extended southward to the NW limit of the continent–ocean boundary (COB). The interpreted Mesozoic sedimentary rocks NW of the COB and the oceanic layer 2 SE of the COB imaged from OBS and gravity data were incorporated into the overriding wedge below the deformation front because the transitional crust subducted beneath the overriding wedge of the southern Taiwan. East of the deformation front, the thickness of the overriding wedge (1.7–5.0 km/s) from the sea floor to the décollement decreases toward the WSW direction from 20.0 km off SW Taiwan to 8.0 km at the deformation front. In particular, near a turn in the orientation of the deformation front, the crustal thickness (7.0–12.0 km) is abruptly thinner and the free-air (?20 to 10 mGal) and Bouguer (30–50 mGal) gravity anomalies are relatively low due to plate warping from an ongoing transition from subduction to collision. West of the deformation front, intra-crustal interfaces dipping landward were observed owing to subduction of the extended continent toward the deformation front. However, the intra-crustal interface near the turn in the orientation of the deformation front dipping seaward caused by the transition from subduction to collision. SE of the COB, the oceanic crust, with a crustal thickness of about 10.0–17.0 km, was thickened due to late magmatic underplating or partially serpentinized mantle after SCS seafloor spreading. The thick oceanic crust may have subducted beneath the overriding wedge observed from the low anomalies of the free-air (?50 to ?20 mGal) and Bouguer (40–80 mGal) gravities across the deformation front.  相似文献   

14.
The anisotropy of magnetic susceptibility was measured on 42 gabbros sampled across a complete plutonic sequence from the Oman ophiolite. The rock fabrics, investigated in the field and through plagioclase crystallographic fabric measurements, were compared to the magnetic fabrics. This comparative study reveals that from the paleo-Moho to the top of the foliated gabbros level, 73% of the rocks display a good correspondence in orientation, between the magnetic and rock fabric orientation. In these rocks, the AMS is controlled by secondary magnetites located in the fracture network of the olivines, and probably, but to a lesser extent, by secondary magnetites located in the exsolution lamellae of the clinopyroxenes. The high correlation between the AMS ellipsoid orientation and the rock fabric orientation is explained by the fact that the magnetic foliation is essentially constrained by the orientation of the olivine fracture planes, which is in turn constrained by the orientation of the overall magmatic rock fabric. In contrast to the primary mineral phases, the orientation of magnetite crystals in these gabbros is not due to their alignment in a flowing magma, so their preferred orientation, although usually mimicking that of the rock fabric, does have not the same origin. Furthermore, given that the preferred orientation of the anisometric secondary magnetites is much less perfect than the preferred orientation of the plagioclases, no correlation between the shape and magnitude of the AMS and plagioclase fabrics can be established. In the uppermost levels of the sequence there is no correspondence between the magnetic and rock fabric orientation. The magnetism of these rocks is mainly carried by primary magnetite and ilmenite grains. These minerals occur as small and scattered interstitial grains that exhibit neither alignment nor parallelism with the pre-existing rock fabric. Hence, the anisotropy, shape and orientation of the AMS ellipsoid are independent of the rock fabric ellipsoid. Although in the Wadi Al Abyad gabbros, just like in other magnetite bearing rocks (Rochette et al., 1992; Archanjo et al., 1995), the AMS cannot be used to evaluate the shape and strength of the finite strain ellipsoid, it can be reliably used to get the orientation of the rock fabric ellipsoid when the AMS is controlled by secondary magnetites.  相似文献   

15.
Based on the geotechnical investigation data of artificial island at Dalian Offshore Airport, the spatial distribution of the physical and mechanical properties of deposit soils was statistically analyzed. The field investigation revealed that the deposit soils could be subdivided into three strata, i.e., the top marine deposit stratum, middle marine-continental deposit stratum, and deep continental deposit stratum. Field and laboratory test results demonstrated that the marine deposit soils had high water content (31.2% < wn < 63.10%), large void ratio (0.88 < e0 < 1.75), low permeability (kv < 10?6 cm/s), flow-plastic state (IL > 1), under consolidated (OCR < 1), high compressibility (Es < 4 MPa), low shear strength (11.7 kPa < cu < 43.7 kPa), and low bearing capacity (0 < fak < 120 kPa), they could not be used as natural foundation. The marine-continental and continental deposits were normally consolidated to over-consolidated (OCR ≥ 1), medium compressibility (4 MPa < Es < 20 MPa), high shear strength (29.7 kPa < cu < 73.7 kPa), and high bearing capacity (fak > 120 kPa). In addition, regression analysis results showed that the compression ratio was positively correlated with the natural water content, the coefficient of vertical consolidation was negatively correlated with the plasticity index, and the coefficient of vertical permeability was positively correlated with the initial void ratio. The results of the field and laboratory tests were synthesized to provide a basis for reclamation design.  相似文献   

16.
Abstract. Cell‐specific fluorescence characteristics were used to characterize the light tolerance of the toxic benthic dinoflagellate Gambierdiscus toxicus. The fluorescence parameter Fv : Fm was measured using pulse amplitude modulation (PAM) fluorometry on individual cells collected from foliose red algae growing in the sub‐tidal margin of South Water Cay, Belize. Samples were collected over several days during sunny and cloudy conditions and compared to samples incubated in situ. The data from individual cells were used to generate both Fv : Fm frequency histograms and averages. Maximum individual cell values of Fv : Fm reached 0.81 in pre‐dawn samples, a value near the theoretical maximum for PAM fluorometry. In field samples from macroalgal hosts, average Fv : Fm values declined only slightly during the day, but cells incubated in bottles under 47 % incident sunlight showed a significant mid‐day depression. In freshly collected samples, near‐maximum Fv : Fm values could be found in individual cells during the entire day; however, the frequency histograms indicated a greater range in Fv : Fm values during the afternoon than in the morning. In contrast, cultures of G. toxicus showed a tight distribution around a mean. Field samples showed a rapid recovery to near‐maximum Fv : Fm within 2 min when assayed using a standardized actinic light series. Similar results were obtained in laboratory cultures of G. toxicus grown at 73 µmol photons · m‐2 · s‐1, but not at 383 µmol photons · m‐2 · s‐1. These data provide empirical support for suggestions that G. toxicus exploits the three‐dimensional structure of the algal host thallus to minimize light exposure. This strategy permits G. toxicus, a high‐light intolerant species in culture, to thrive in shallow, well‐lit tropical seas. It may also partially explain the observed preference of G. toxicus for complex, foliose macroalgae as hosts.  相似文献   

17.
The tight sandstones of the Cretaceous Quantou formation are the main exploration target for hydrocarbons in the southern Songliao basin. Authigenic quartz is a significant cementing material in these sandstones, significantly reducing porosity and permeability. For efficient predicting and extrapolating the petrophysical properties within these tight sandstones, the quartz cement and its origin need to be better understood. The tight sandstones have been examined by a variety of methods. The sandstones are mostly lithic arkoses and feldspathic litharenites, compositionally immature with an average framework composition of Q43F26L31, which are characterized by abundant volcanic rock fragments. Mixed-layer illite/smectite (I/S) ordered interstratified with R = 1 and R = 3 is the dominating clay mineral in the studied sandstone reservoirs. Two different types of quartz cementation modes, namely quartz grain overgrowth and pore-filling authigenic quartz, have been identified through petrographic observations, CL and SEM analysis. Homogenization temperatures of the aqueous fluid inclusions indicate that both quartz overgrowths and pore-filling authigenic quartz formed with a continuous process from about 70 °C to 130 °C. Sources for quartz cement produced are the conversion of volcanic fragments, smectite to illite reaction and pressure solution at micro stylolites. Potassium for the illitization of smectite has been sourced from K-feldspar dissolution and albitization. Silica sourced from K-feldspars dissolution and kaolinite to illite conversion is probably only minor amount and volumetrically insignificant. The internal supplied silica precipitate within a closed system where the transport mechanism is diffusion. The quartz cementation can destroy both porosity and permeability, but strengthen the rock framework and increase the rock brittleness effectively at the same time.  相似文献   

18.
We measured dissolved isoprene (2-methyl-1,3-butadiene; C5H8) concentrations in a broad area of the southern Indian Ocean and in the Indian sector of the Southern Ocean from 35°S to 64°S and from 37°E to 111°E during austral summer 2010–2011. Isoprene concentrations were continuously measured by use of a proton-transfer-reaction mass spectrometer combined with a bubbling-type equilibrator. Concentrations of isoprene and its emission flux throughout the study period ranged from 0.2 to 395 pmol L?1 and from 181 to 313 nmol m?2 day?1, respectively, the averages being generally higher than those of previous studies. Although we found a significant linear positive relationship between isoprene and chlorophyll-a concentrations (r 2 = 0.37, n = 36, P < 0.001), the correlation coefficient was lower than previously reported. In contrast, in the high-latitude area (>53°S) we identified a significant negative correlation (r 2 = 0.59, n = 1263, P < 0.001) between isoprene and the temperature-normalized partial pressure of carbon dioxide (n-pCO2), used as an indicator of net community production in this study. This suggests that residence times and factors controlling variations in isoprene and n-pCO2 are similar within a physically stable water column.  相似文献   

19.
The geochemical composition of phosphorites and phosphatic sediments in the Baja California peninsula is studied and used to assess the environment in which phosphogenesis took place. The deposits are classified in three groups: (1) stratified phosphorites, (2) phosphatic sandy sediments from beaches and dunes, and (3) submarine sediments. Some of the elements that might have substituted Ca and PO4 during francolite mineralization were studied by means of ICP-AES. Significant differences are seen in the concentration of these metals (e.g., Cr = 72-406 μg g?1 and V = 17-198 μg g?1), indicating that their concentration is not only controlled by the P2O5 concentration, but also by paleo-environmental conditions existing during francolite precipitation. Shale normalized REE patterns suggest two main environments of formation: (1) a strong negative Ce anomaly (< ? 0.3) and La enrichment (La/Nd ≥ 1) enrichment, suggesting well oxygenated shelf environments and probably lower light REE weathering, and (2) a weak negative Ce anomaly (> ? 0.3) and La depletion (La/Nd ≤ 1) suggesting shallower waters or restricted circulation and probably LREE weathering.  相似文献   

20.
鄂尔多斯盆地王窑地区上三叠统长6油层成岩作用研究   总被引:15,自引:0,他引:15  
通过多项测试方法,对安塞油田王窑地区长6油层含油砂体的岩石学、成岩作用、储集物性和孔隙发育特征进行分析和研究。结果表明,该区储集砂体为成分成熟度较低的长石砂岩;主要自生矿物为绿泥石、浊沸石、方解石、石英、钾长石、伊利石和钠长石等;储层次生孔隙发育,主要孔隙类型为粒间孔隙、骨架颗粒溶孔和浊沸石溶孔。孔隙结构具有小孔、细喉的特点;储层成岩演化阶段处于晚成岩A亚期;储层性质明显地受到沉积微相和成岩作用的影响。沉积物粒度较粗、厚度较大的河道砂和河口砂坝砂的储集物性明显优于各种粒度较细、厚度较薄的席状砂体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号