共查询到20条相似文献,搜索用时 0 毫秒
1.
S. I. Solovyev R. N. Boroyev A. V. Moiseyev A. Du K. Yumoto 《Geomagnetism and Aeronomy》2009,49(4):450-460
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z /Δt) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere. 相似文献
2.
To study the relations of the polar cap (PC) magnetic activity (characterized by the PC index) to magnetic disturbances in the auroral zone (AL index) the behavior of 62 repetitive bay-like magnetic disturbances has been analyzed. It was found that the PC index, derived as a proxy of the geoeffective interplanetary electric field Em, starts to increase, on average, about 30 min ahead of the magnetic disturbance onset. Value of Em and PC~2 mV/m seems to be necessary for development of the repetitive bay-like disturbances with peak AL exceeding 400 nT. Growth phase duration (the time interval between the start of PC increase and AL sudden onset) and intensity of magnetic disturbances in the auroral zone (AL max) highly correlate with the PC growth rate. The growth phase reduces to a few minutes, if the PC index suddenly jumps above ~6–8 mV/m. The sharp development of Birkeland current wedge during expansion phase insignificantly influences the polar cap activity: the corresponding PC index increase does not exceed 10–20% of the PC value. It is concluded that the PC index may be considered as a convenient proxy of the solar wind energy input into the magnetosphere. 相似文献
3.
L. V. Egorova 《Geomagnetism and Aeronomy》2012,52(6):761-767
A joint analysis of variations in the ionospheric parameters at three vertical-incidence stations (Heiss Island, Dixon Island, and Sodankyla) and the solar wind plasma characteristics (i.e., the PC magnetic index characterizing the IMF geoeffective part) indicated that the PC index can be used as a predictor in order to diagnose the electron density level in the polar ionosphere. An increase in the PC level corresponds to positive and negative gradients in variations in the F region??s critical frequencies. As PC becomes larger than 1.5, the electron density increases at night in winter and, on the contrary, decreases during the day in summer and during daylight hours in winter. A delay in the ionospheric F region??s response to PC variations depends on the station latitude: this delay is no more than 1 and 2 h at the Heiss Island and Dixon Island stations and can be more than 6 h in summer and 0?C1 h in winter at Sodankyla. An increase in the PC amplitude as a rule corresponds to an anomalous increase in foEs relative to the median values at these stations with a delay of 1 h. 相似文献
4.
I. P. Kirpichev O. I. Yagodkina V. G. Vorobjev E. E. Antonova 《Geomagnetism and Aeronomy》2016,56(4):407-414
The position of the auroral oval poleward and equatorward boundary projections on the equatorial plane in the nightside MLT sector during magnetically quiet periods (|AL| < 200 nT, |Dst| < 10 nT) has been determined. The oval boundary positions were determined according to the precipitation model developed at Polar Geophysical Institute (http://apm.pgia.ru/). The isotropy of the averaged plasma pressure and the experimentally confirmed balance of pressures during the nighttime have been taken into account. The morphological mapping method has been used to map the oval poleward and equatorward edges without the use of any magnetic field model on the assumption that the condition of magnetostatic equilibrium is valid. Ion pressures at ionospheric altitudes and in the equatorial plane have been compared. It has been shown that the auroral oval equatorward boundary in the midnight sector is localized at geocentric distances of ~7 RE, which is in good agreement with the position of the energetic particle injection boundary in the equatorial plane. The oval poleward edge is localized at the ~10 RE geocentric distance, which is in good agreement with the position of the equatorward boundary of the region with a high turbulence level in the Earth’s magnetosphere plasma sheet. 相似文献
5.
Jaroslav Tauer 《Studia Geophysica et Geodaetica》1970,14(3):325-335
Zusammenfassung Unter Anwendung der auf 12 Uhr GMT bezogenen Beobachtungen aus den 33 ionosph?rischen und geomagnetischen Stationen wurde
eine statistische Analyse der Beziehungen zwischen dem Vorkommen der sporadischen E-Schicht und den geomagnetischen St?rungen
durchgeführt. Es wurde keine einfache oder eindeutige Abh?ngigkeit gefunden. Die Ergebnisse deuten nur an, dass man gr?sseres
Vorkommen der sporadischen E-Schicht in magnetisch mehr gest?rten Zeitabschnitten erwarten kann.
Address: Bočni II, Praha 4-Spořilov. 相似文献
Address: Bočni II, Praha 4-Spořilov. 相似文献
6.
《Journal of Atmospheric and Solar》2007,69(9):1063-1074
Auroral events that occurred on January 24, 1986 in central Canada were recorded by an all-sky TV imager. During these events, auroral breakup was confined to a region between two foot points of neighboring geosynchronous satellites, GOES5 and GOES6. We examined field line signatures at satellite locations in unique station distributions and concluded that field line observation indicated plasma motion in the equatorial plane. The plasma motion showed an earthward compression combined with bifurcation (duskward or dawnward displacement in dusk/dawn sectors). In addition, we were able to infer an elliptical circulation of plasmas in the equatorial plane at Pi2 periods. Appearance in opposite rotation beside the auroral region indicated excitation of surface waves. We were able to show that auroral breakups occurred at a meridian of bifurcation. We suggest that a high plasma pressure region occurring tailward of geosynchronous altitudes may drive those plasma motions. 相似文献
7.
The occurrence of Traveling Ionospheric Disturbances (TIDs) at a midlatitude location (London, Canada, 43°N, 81°W) has been examined using data recorded by standard 5 min ionograms during the year 2000. It is found that the dominant source of TIDs during daytime appears to be the sunrise terminator but during nighttime the sunset terminator and magnetic disturbances both contribute to the TIDs. The daytime TIDs show a weak semiannual variation with maxima in solstices. The nighttime TIDs show insignificant annual variation. 相似文献
8.
Ionospheric disturbances at heights of the F 2 layer maximum during the strong magnetic storm (the minimum value of the Dst index was ?149 nT) and the magnetic superstorm (the minimum value of the Dst index was ?387 nT) have been compared based on the data from two pairs of magnetically conjugate midlatitude ground stations for ionospheric vertical sounding. The storms began on March 19, 2001, and March 31, 2001, respectively. It has been obtained that almost only negative ionospheric disturbances were observed in the Northern and Southern hemispheres in both cases. The maximum effect in changes in the layer critical frequency (foF2) in both hemispheres has a time delay relative to the moment of the maximum disturbance in the Dst index on the order of 3–4 h for the strong storm and about 1 h for the superstorm. The disturbed variations in the foF2 critical frequency in different hemispheres correlate well with each other in the plane of one magnetic meridian, but the correlation substantially weakens at different magnetic longitudes. An assumption is made that the revealed features of the behavior of the disturbed midlatitude ionospheric F 2 layer are caused by the complex character of the thermospheric response to the energy release in the auroral zone during the considered magnetic storms. 相似文献
9.
E. L. Afraimovich S. V. Voeykov N. P. Perevalova K. G. Ratovsky 《Geomagnetism and Aeronomy》2006,46(5):603-608
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered according to measurements of the total electron content (TEC) during the magnetic storms of October 29–31, 2003, and November 7–11, 2004, has been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region (foF2) were used for this purpose. The variations in TEC and foF2 were similar for all events mentioned above. The previous assumption that the region of thickness 150–200 km in the vicinity of the ionospheric F region mainly contributes to TEC modulation was confirmed for the cases when the electron density disturbance at an F region maximum was not more than 50%. However, this region probably becomes more extensive in vertical when the electron density disturbance in the vicinity of the ionospheric F region is about 85%. 相似文献
10.
O. V. Khorosheva 《Geomagnetism and Aeronomy》2007,47(5):543-547
The results of studying the dependence of the earthward shift of the magnetospheric boundaries on the magnetic storm power are generalized. The magnetosphere saturation effect, a sharp deceleration of the boundary shift at an increase in the ring current power above a certain critical level, is discussed. The geoeffectiveness of the solar wind parameters is discussed. 相似文献
11.
12.
《Journal of Atmospheric and Solar》2000,62(7):553-565
The intention in this paper is to investigate the form and dynamics of large-scale traveling ionospheric disturbances (LS TIDs) of auroral origin. We have devised a technique for determining LS TID parameters using GPS-arrays whose elements can be selected from a large set of GPS stations forming part of the International GPS Service network. The method was used to determine LS TID parameters during a strong magnetic storm of September 25, 1998. The North-American sector where many GPS stations are available, and also the time interval 00:00–06:00 UT characterized by a maximum value of the derivative Dst were used in the analysis. The study revealed that this period of time was concurrent with the formation of the main ionospheric trough with a conspicuous southward wall in the range of geographic latitudes 50–60° and the front width of no less than 7500 km. The auroral disturbance-induced large-scale solitary wave with a duration of about 1 h and the front width of at least 3700 km propagated in the equatorward direction to a distance of no less than 2000–3000 km with the mean velocity of about 300 m/s. The wave front behaved as if it ‘curled’ to the west in longitude where the local time was around afternoon. Going toward the local nighttime, the propagation direction progressively approximated an equatorward direction. 相似文献
13.
极光活动加剧和极光电集流增强是磁层-电离层能量耦合的两种重要表现形式,它们同为磁层带电粒子向电离层沉降的结果,但是变化规律却非常不同.本文用地基磁场资料,反演极区等效电流体系,研究地磁平静期和扰动期极光电集流带的运动特点.研究表明,Harang间断把极光电集流带分为两段:下午—黄昏段的东向电集流带较弱,而晨侧和子夜—凌晨段的西向电集流带较强.在亚暴膨胀相,随着AE指数增大,整个极光卵向赤道扩展,而极光电集流带却表现出分段差异的特点:下午—黄昏东向电集流带向低纬移动,晨侧西向电集流带也向赤道移动,而子夜—凌晨西向电集流带则向极移动.电动力学分析表明,在不同地方时段,控制电流的主要因素不同,因而,电流及其磁扰有不同的特点:下午—黄昏东向电集流和晨侧西向电集流组成了DP2电流体系,主要受控于磁层对流电场,反映了“驱动过程”的行为;而子夜—凌晨西向电集流是DP1电流体系的基本部分,主要受控于电导率,反映了“卸载过程”的特点. 相似文献
14.
Using the empirical magnetic field model dependent on the Dst index and solar wind dynamic pressure, we calculated the behaviour of the contour B = Bs in the equatorial plane of the magnetosphere where Bs is the magnetic field in the subsolar point at the magnetopause. The inner domain of the magnetosphere outlined by this contour contains the bulk of geomag-netically trapped particles. During quiet time the boundary of the inner magnetosphere passes at the distance ∼10RE at noon and at ∼7RE at midnight. During very intense storms this distance can be reduced to 4–5 RE for all MLT. The calculation results agree well with the satellite measurements of the magneto-pause location during storms. The ionospheric projection of the B = Bs contour calculated with the Euler potential technique is close to the equatorward edge of the auroral oval. 相似文献
15.
About 100 breakups of different types and intensities are studied on the basis of Lovozero Observatory data. Magnetic pulsations
in different frequency ranges, VLF emissions, and auroral activity are analyzed using the TV data. It is found that magnetic
pulsations in all frequency ranges lag behind the moment of breakup by 0.5–2.0 min, and bursts of low-intensity broadband
VLF emission hiss are observed 3–10 min before breakup. Hiss leading breakup corresponds to feeble auroras located northward
of a pre-breakup arc. 相似文献
16.
V. K. Roldugin Yu. P. Maltsev A. A. Ostapenko A. V. Roldugin 《Geomagnetism and Aeronomy》2006,46(4):438-449
Pulsations in the electron fluxes and magnetic field on two geosynchronous satellites and at several ground-based observatories have been studied. Relativistic electron flux pulsations with a period of 6 min originated after the shock arrival from the solar wind at 0258 UT on February 11, 2000, had a regular character, and propagated from the dayside to the nightside at a velocity of about 60 deg min?1. Magnetic field oscillations on the satellites and on the Earth had a more complicated structure. Field oscillations morphologically similar to electron oscillations are observed only on one satellite in one component and at one-two ground-based stations, where a periodicity of 10–12 min was mainly observed. It is assumed that magnetic pulsations are Alfvén resonances generated by a fast magnetosonic wave. 相似文献
17.
A morphological analysis of the results of sounding the lower equatorial ionosphere (the D region) in the region of action of strong tropospheric vortex disturbances (tropical cyclones, TC) is presented in this work. Based on the rocket sounding of the lower ionosphere at Thumba rocket site (8° N, 77° E) in May–June 1985 and on the satellite monitoring of TC in the northern Indian Ocean, it is demonstrated that a sharp depletion (by a factor of 2–4) of the electron concentration at altitudes of 60–80 km could be a response of the ionosphere during the TC active phase. In this case the lower boundary of the D region rose by several kilometers (not more than 5 km), and the temperature in the region of the stratopause slightly (by 2°–3°) increases. It is assumed that internal gravity waves (IGWs) generated by TC cause the effect on the lower ion-osphere. 相似文献
18.
The specific features of radio propagation from the viewpoint of physics of processes in the polar ionosphere have been studied in the present work based on the oblique-incidence sounding of the ionosphere (OISI) on the St. Petersburg-Belyi Nos (Amderma) polar radio path during substorm activity in the summer months of 1997. The OISI data were used to find the following parameters: maximum observable frequency during signal reflection from the E s layer (EsMOF), maximum observable frequency during signal reflection from the F 2 layer (F2MOF), and lowest observable frequencies for the E s and F 2 layers (EsLOF and F2LOF, respectively). Absolute MOF and LOF values were also found out. The total number of received rays was determined in addition to the above parameters. Isolated substorms against a quiet background were selected for the studies. These substorms resulted in substantial changes in the ionospheric radio channel and propagation conditions along the path. The results of the studies are as follows. (1) The following distinct regularities in the HF propagation along the path have been determined: (i) the range of operational frequencies Δ = MOF-LOF becomes substantially narrower during substorms; (ii) the radio propagation mechanism changes during a substorm; (iii) during substorms, the auroral absorption substantially and partially increases in the course of the expansion and recovery phases, respectively; (iv) multiray effect sharply increases at the beginning of the substorm active phase (T 0). (2) The indications of changes in the radio propagation parameters, which can possibly be used to predict the beginning of substorm development, have been formulated. (3) All revealed regularities in the HF propagation in the auroral zone have been explained from the geophysical viewpoint. It is important to use these regularities to organize radio communication and to solve the problems within the scope of the Space Weather Program. 相似文献
19.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind. 相似文献
20.
The unique spectrographic observations of auroras on the Kola Peninsula, simultaneously performed in 1970 at Loparskaya and Kem stations using C-180-S cameras, have been analyzed by up-to-date digital data processing. The position and dynamics of proton precipitation relative to other manifestations of auroral and substorm activity (auroral arcs and electrojets) under moderately and weakly disturbed conditions have been analyzed. Several previously known regularities in the morphology of proton auroras have been confirmed. It has been indicated that the direction of motion of the proton band equatorward boundary in the evening sector changes at a sign reversal of the IMF Z component. Weak breakups affect the poleward boundary of the proton band but do not influence the position of the equatorward boundary of this band, which results in the expansion of the proton emission region. When a disturbance is stronger, the proton emission disappears near an active electron arc and subsequently appears poleward of its position before intensification. Short-term proton precipitation is also observed in the region of active electron precipitation during an intense breakup in the form of N–S structures. 相似文献