首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed two gas-phase models to study the chemistry of circumstellar envelope surrounding the carbon-rich variable star IRAS 15194-5115. The network used consists of 3893 reactions involving 397 gas-phase species. The derived fractional abundances for many molecules are in excellent agreement with values obtained from observations. The predicted column densities from the two models go well with the observed values of carbon star IRC + 10216. The dominant formation routes for three groups of species are discussed through the inner and outer envelopes.  相似文献   

2.
The attempt to understand the temperature dependence of the HNC/HCN abundance ratio in interstellar clouds has been long standing and indecisive. In this paper we report quantum chemical and dynamical studies of two neutral–neutral reactions thought to be important in the formation of HNC and HCN, respectively – C+NH2→HNC+H, and N+CH2→HCN+H. We find that although these reactions do lead initially to the products suggested by astronomers, there is so much excess energy available in both reactions that the HCN and HNC products are able to undergo efficient isomerization reactions after production. The isomerization leads to near equal production rates of the two isomers, with HNC slightly favoured if there is sufficient rotational excitation. This result has been incorporated into our latest chemical model network of dense interstellar clouds.  相似文献   

3.
Large molecules in the envelope surrounding IRC+10216   总被引:1,自引:0,他引:1  
A new chemical model of the circumstellar envelope surrounding the carbon-rich star IRC+10216 is developed that includes carbon-containing molecules with up to 23 carbon atoms. The model consists of 3851 reactions involving 407 gas-phase species. Sizeable abundances of a variety of large molecules including carbon clusters, unsaturated hydrocarbons and cyanopolyynes have been calculated. Negative molecular ions of chemical formulae and C n H (7 n 23) exist in considerable abundance, with peak concentrations at distances from the central star somewhat greater than their neutral counterparts. The negative ions might be detected in radio emission, or even in the optical absorption of background field stars. The calculated radial distributions of the carbon-chain C n H radicals are looked at carefully and compared with interferometric observations.  相似文献   

4.
Compact regions of enhanced HCO+ and NH3 emission have been detected close to a number of Herbig–Haro objects. An interpretation of these detections is the following: a transient clump within the molecular cloud has been irradiated by the shock that generates the Herbig–Haro object. The irradiation releases icy mantles from the grains within the transient clump and initiates a photochemistry. On the basis of this picture, we have developed an extensive chemical model which predicts that a wide range of species, other than NH3 and HCO+, should also be detectable. These include CH3OH, H2S, C3H4, H2CO, SO, SO2, H2CS and NS. The chemical effects should last ∼  104 yr  .  相似文献   

5.
We have computed optical absorption-line profiles of CH+ and CH, as predicted by a model of a C-type shock propagating in a diffuse interstellar cloud. Both these species are produced in the shock wave in the reaction sequence that is initiated by C+(H2, H)CH+. Whilst CH+ flows at the ion speed, CH, which forms in the dissociative recombination reaction CH+3(e, H2)CH, flows at a speed which is intermediate between those of the ions and the neutrals. The predicted velocity shift between the CH+ and CH line profiles is found to be no more than approximately 2 km s−1, which is smaller than has previously been assumed. We also investigate OH and HCO+, finding that the correlation between their column densities, recently observed in the diffuse interstellar medium, can be reproduced by the model.  相似文献   

6.
The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms: desorption resulting from H2 formation on grains, direct cosmic ray heating and cosmic ray-induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species selectivity of the desorption and the assumed threshold adsorption energies, E t), all the three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important.
Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes, we find that desorption by H2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions – rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L16 89B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.  相似文献   

7.
The evolution of star-forming core analogues undergoing inside-out collapse is studied with a multipoint chemodynamical model which self-consistently computes the abundance distribution of chemical species in the core. For several collapse periods the output chemistry of infalling tracer species such as HCO+, CS and N2H+ is then coupled to an accelerated Λ-iteration radiative transfer code, which predicts the emerging molecular line profiles using two different input gas/dust temperature distributions. We investigate the sensitivity of the predicted spectral line profiles and line asymmetry ratios to the core temperature distribution, the time-dependent model chemistry, as well as to ad hoc abundance distributions. The line asymmetry is found to be strongly dependent on the adopted chemical abundance distribution. In general, models with a warm central region show higher values of blue asymmetry in optically thick HCO+ and CS lines than models with a starless core temperature profile. We find that in the formal context of Shu-type inside-out infall, and in the absence of rotation or outflows, the relative blue asymmetry of certain HCO+ and CS transitions is a function of time and, subject to the foregoing caveats, can act as a collapse chronometer. The sensitivity of simulated HCO+ line profiles to linear radial variations, subsonic or supersonic, of the internal turbulence field is investigated in the separate case of static cores.  相似文献   

8.
We employ quantum chemical calculations using the CBS-RAD ('Complete Basis Set – Radicals') technique on the C2N2H potential energy surface to show that the reaction of HNC with CN is a viable and plausible route to NCCN in cold astrophysical environments. We use detailed chemical kinetic models to predict the abundance of NCCN in TMC-1 and IRC+10216. Radio-astronomical detection of NCCN is precluded by its lack of a dipole moment. We discuss other prospects for its observation in interstellar and circumstellar environments, by space-borne infrared spectroscopy, indirectly by detection of the NCCNH+ ion, or inferentially by detection of its higher-energy, polar isomer CNCN.  相似文献   

9.
We analyze the influence of errors in the rate constants of gas-phase chemical reactions on the model abundances of molecules in the interstellar medium using the UMIST 95 chemical database. By randomly varying the rate constants within the limits of the errors given in UMIST 95, we have estimated the scatters in theoretical abundances for dark and diffuse molecular clouds. All of the species were divided into six groups by the scatter in their model equilibrium abundances when varying the rate constants of chemical reactions. The distribution of the species in groups depends on the physical conditions. The scatters in the abundances of simple species lie within 0.5–1 order of magnitude, but increase significantly as the number of atoms in the molecule increases. We suggest a simple method for identifying the reactions whose rate constants have the strongest effect on the abundance of a selected species. This method is based on an analysis of the correlations between the abundance of species and the reaction rate constants and allows the extent to which an improvement in the rate constant of a specific reaction reduces the uncertainty in the abundance of the species concerned to be directly estimated.  相似文献   

10.
Several processes have been suggested as ways of returning accreted grain mantles to the gas, thus preventing the total removal of molecules from the gas phase in dark quiescent clouds. We attempt to distinguish between them by considering not only the calculated gas-phase abundances, but also the ratio of the abundances of deuterated species to non-deuterated species. We find that the D/H ratio in molecules is relatively model-independent, but that desorption due to the formation of H2 on grains gives the best overall agreement with the observations.  相似文献   

11.
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+, CS and H2CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+, as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model.  相似文献   

12.
We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC3N has been observed in hot cores, the longer chained species, HC5N, HC7N and HC9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as 'chemical clocks' which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales,  ∼102.5 yr  . We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC5N and HC7N in Walsh et al. are analysed and discussed.  相似文献   

13.
We have carried out a systematic search for the molecular ion CO+ in a sample of eight protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues for the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.  相似文献   

14.
We have investigated the role that energetic hydrogen atoms, produced in cometary comae by the photodissociation of water molecules, could have in driving chemical reactions that are endothermic, or possess activation energy barriers. We have developed a model of the density and energy spectrum of these atoms in the coma and have incorporated a number of reactions driven by fast H atoms into our existing coma model. We find that, in high-activity comets close to the Sun, such reactions are competitive with direct photodissociation as the principal destruction mechanism for molecules with long lifetimes in the solar radiation field. We show that measurements of the CH2OH : CH3O ratio may be used to assess the importance of suprathermal reactions in the coma. We also confirm that these reactions are probably unable to account for the observed HNC : HCN ratios.  相似文献   

15.
The circumstellar envelopes of carbon-rich AGB stars show a chemical complexity that is exemplified by the prototypical object IRC +10216, in which about 60 different molecules have been detected to date. Most of these species are carbon chains of the type C n H, C n H2, C n N, HC n N. We present the detection of new species (CH2CHCN, CH2CN, H2CS, CH3CCH and C3O) achieved thanks to the systematic observation of the full 3 mm window with the IRAM 30m telescope plus some ARO 12m observations. All these species, known to exist in the interstellar medium, are detected for the first time in a circumstellar envelope around an AGB star. These five molecules are most likely formed in the outer expanding envelope rather than in the stellar photosphere. A pure gas phase chemical model of the circumstellar envelope is reasonably successful in explaining the derived abundances, and additionally allows to elucidate the chemical formation routes and to predict the spatial distribution of the detected species.  相似文献   

16.
New multifrequency spatial and spectral studies of the hot molecular core associated with the ultracompact HII region G34.3+0.15 have demonstrated an extremely rich chemistry in this archetypal hot core and revealed differing spatial structure between certain species which may be a dynamical effect of chemical evolution. The structure of the hot core has been studied with the JCMT in the high excitation J=19-18 and J=18-17 lines of CH3CN and with the Nobeyama Millimetre Array at 4 arc resolution in the J=6-5 transition. Comparison with a VLA NH3(3,3) map shows a displacement between peak emission in the two chemical species which is consistent with chemical processing on a time scale comparable to the dynamical time scale of 105 yrs.A 330-360 GHz spectral survey of the hot core with the JCMT has detected 358 spectral lines from at least 46 distinct chemical species, including many typical of shocked chemistry while other species indicate abundances that reflect the chemistry of a previous cold phase. The first unambiguous detection of ethanol in hot gas has been made. Observations of 14 rotational transitions of this molecule yield a temperature of 125 K and column density 2×1015 cm–2. This large abundance cannot be made by purely gas-phase processes and it is concluded that ethanol must have formed by grain surface chemistry.  相似文献   

17.
We study the star formation history of normal spirals by using a large and homogeneous data sample of local galaxies. For our analysis we utilize detailed models of chemical and spectrophotometric galactic evolution, calibrated on the Milky Way disc. We find that star formation efficiency is independent of galactic mass, while massive discs have, on average, lower gas fractions and are redder than their low-mass counterparts; put together, these findings convincingly suggest that massive spirals are older than low-mass ones. We evaluate the effective ages of the galaxies of our sample and we find that massive spirals must be several Gyr older than low-mass ones. We also show that these galaxies (having rotational velocities in the 80–400 km s−1 range) cannot have suffered extensive mass losses, i.e. they cannot have lost during their lifetime an amount of mass much larger than their current content of gas+stars.  相似文献   

18.
Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by ultraviolet (UV) and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time-of-flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum UV (21.21 eV) and soft X-ray (282–310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50 per cent of the ionized benzene molecules survive to UV dissociation while only about 4 per cent resist to X-rays. Partial ion yields of H+ and small hydrocarbons, such as  C2H+2, C3H+3, C4H+2  , are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross-sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 was obtained.  相似文献   

19.
We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass  (4–7 M)  asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while 'normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.  相似文献   

20.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号