首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the implications of primordial magnetic fields for the thermal and ionization history of the post-recombination era. In particular, we compute the effects of dissipation of primordial magnetic fields owing to ambipolar diffusion and decaying turbulence in the intergalactic medium (IGM) and the collapsing haloes, and compute the effects of the altered thermal and ionization history on the formation of molecular hydrogen. We show that, for magnetic field strengths in the range  2 × 10−10≲ B 0≲ 2 × 10−9 G  , the molecular hydrogen fraction in IGM and collapsing halo can increase by a factor of 5 to 1000 over the case with no magnetic fields. We discuss the implication of the increased molecular hydrogen fraction on the radiative transfer of ultraviolet photons and the formation of first structures in the universe.  相似文献   

2.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

3.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

4.
One of the methods discussed in deflecting the orbit of an Earth-colliding asteroid is the use of nuclear explosives. In assessing its feasibility, apart from political considerations, it is important to quantify how effective it is in orbit deflection. The transfer of radiation incident at the surface is governed by a non-linear diffusion equation. For low-yield explosions with a slab geometry ( S 0≃108 kJ μs−1), the temperature at depth x and time t is well approximated by a similarity solution of the form T ( x , t )= T 0 f (ξ), ξ= x/ ( T n 0 t )1/2, with T 0 given by ( S 0/σ)1/4, where σ is the Stefan–Boltzmann constant, n is an index that specifies the radiation transfer and f (ξ) is the solution of a non-linear differential equation subject to the condition f (0)=1 and limξ→∞ f (ξ)=0. For high-yield explosions ( S 0≃1010 kJ μs−1), numerical solutions to the non-linear diffusion equation can be obtained. These solutions have properties similar to the case of low-yield explosions. If the duration of the explosion is d ×10−8 s, where d is close to 3, the fraction of energy absorbed by the surface is found to be 7, 12 and 23 per cent for S 0=108, 109 and 1010 kJ μs−1 respectively.  相似文献   

5.
We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination Universe. After recombination, the Universe becomes mostly neutral, resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium via ambipolar diffusion and, for small enough scales, by generating decaying magnetohydrodynamics turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination Universe. We show that the dissipation effects of magnetic fields, which redshifts to a present value   B 0= 3 × 10−9 G  smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths  τ≳ 0.1  , although not in the range of redshifts needed to explain the recent Wilkinson Microwave Anisotropy Probe ( WMAP ) polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for   z ≳ 15  . We show that early structure formation induced by nanoGauss magnetic fields is potentially capable of producing the early reionization implied by the WMAP data. Future cosmic microwave background observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength.  相似文献   

6.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

7.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   

8.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

9.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

10.
Hydrostatic equilibrium of the multiphase interstellar medium in the solar vicinity is reconsidered, with the regular and turbulent magnetic fields treated separately. The regular magnetic field strength required to support the gas is consistent with independent estimates, provided that energy equipartition is maintained between turbulence and random magnetic fields. Our results indicate that a mid-plane value of B 0=4 μG for the regular magnetic field near the Sun leads to more attractive models than B 0=2 μG . The vertical profiles of both the regular and random magnetic fields contain disc and halo components, the parameters of which we have determined. The layer at 1≲| z |≲4 kpc can be overpressured and an outflow at a speed of about 50 km s−1 may occur there, presumably associated with a Galactic fountain flow, if B 0≃2 μG .
We show that hydrostatic equilibrium in a warped disc must produce asymmetric density distributions in z , in rough agreement with H  i observations in the outer Galaxy. This asymmetry may be a useful diagnostic of the details of the warping mechanism in the Milky Way and other galaxies. We find indications that gas and magnetic field pressures are different above and below the warped midplane in the outer Galaxy, and quantify the difference in terms of turbulent velocity and/or magnetic field strength.  相似文献   

11.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

12.
We study the generation of a stochastic gravitational wave (GW) background produced from a population of core-collapse supernovae, which form black holes in scenarios of structure formation. We obtain, for example, that the formation of a population (Population III) of black holes, in cold dark matter scenarios, could generate a stochastic GW background with a maximum amplitude of   h BG≃10−24  and corresponding closure energy density of  ΩGW∼10−7  , in the frequency band   ν obs≃30–470 Hz  (assuming a maximum efficiency of generation of GWs, namely,   ɛ GWmax=7×10−4)  for stars forming at redshifts   z ≃30–10  . We show that it will be possible in the future to detect this isotropic GW background by correlating the signals of a pair of 'advanced' LIGO observatories (LIGO III) at a signal-to-noise ratio of ≃40. We discuss what astrophysical information could be obtained from a positive (or even a negative) detection of such a GW background generated in scenarios such as those studied here. One of them is the possibility of obtaining the initial and final redshifts of the emission period from the observed spectrum of GWs.  相似文献   

13.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

14.
Early reionization of the intergalactic medium (IGM), which is favoured from the WMAP temperature–polarization cross-correlations, contests the validity of the standard scenario of structure formation in the cold dark matter (CDM) cosmogony. It is difficult to achieve early enough star formation without rather extreme assumptions such as a very high escape fraction of ionizing photons from protogalaxies or a top-heavy initial mass function (IMF). Here, we propose an alternative scenario that additional fluctuations on small scales induced by primordial magnetic fields trigger early structure formation. We found that ionizing photons from Population III stars formed in dark haloes can easily reionize the Universe by   z ≃ 15  if the strength of primordial magnetic fields is between 0.7 and  1.5 × 10−9 G  .  相似文献   

15.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

16.
A follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich  ( M dust≃ 9 × 108 M)  , luminous  ( L FIR≃ 2 × 1012 L)  star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of  ≃400 M yr−1  . We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N 350(>25 mJy) ∼ 200–500 deg−2.  相似文献   

17.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

18.
The accretion-induced neutron star (NS) magnetic field evolution is studied through considering the accretion flow to drag the field lines aside and dilute the polar-field strength, and as a result the equatorial field strength increases, which is buried inside the crust on account of the accretion-induced global compression of star crust. The main conclusions of model are as follows: (i) the polar field decays with increase in the accreted mass; (ii) the bottom magnetic field strength of about 108 G can occur when the NS magnetosphere radius approaches the star radius, and it depends on the accretion rate as     ; and (iii) the NS magnetosphere radius decreases with accretion until it reaches the star radius, and its evolution is little influenced by the initial field and the accretion rate after accreting  ∼0.01 M  , which implies that the magnetosphere radii of NSs in low-mass X-ray binaries would be homogeneous if they accreted the comparable masses. As an extension, the physical effects of the possible strong magnetic zone in the X-ray NSs and recycled pulsars are discussed. Moreover, the strong magnetic fields in the binary pulsars PSR 1831−00 and PSR 1718−19 after accreting about  0.5 M  in the binary-accretion phase,  8.7 × 1010  and  1.28 × 1012 G  , respectively, can be explained through considering the incomplete frozen flow in the polar zone. As an expectation of the model, the existence of the low magnetic field  (∼3 × 107 G)  NSs or millisecond pulsars is suggested.  相似文献   

19.
We numerically follow the nonlinear evolution of the Parker instability in the presence of phase transitions from a warm to a cold H  i interstellar medium in two spatial dimensions. The nonlinear evolution of the system favours modes that allow the magnetic field lines to cross the galactic plane. Cold H  i clouds form with typical masses  ≃105 M  , mean densities  ≃20 cm−3  , mean magnetic-field strengths  ≃4.3 μG  (rms field strengths  ≃6.4 μG  ), mass-to-flux ratios  ≃0.1–0.3  relative to critical, temperatures  ≃50 K  , (two-dimensional) turbulent velocity dispersions  ≃1.6 km s−1  and separations  ≃500 pc  , in agreement with observations. The maximum density and magnetic-field strength are  ≃103 cm−3  and  ≃20 μG  , respectively. Approximately 60 per cent of all H  i mass is in the warm neutral medium. The cold neutral medium is arranged into sheet-like structures both perpendicular and parallel to the galactic plane, but it is also found almost everywhere in the galactic plane, with the density being highest in valleys of the magnetic field lines. 'Cloudlets' also form whose physical properties are in quantitative agreement with those observed for such objects by Heiles. The nonlinear phase of the evolution takes ≲30 Myr, so that, if the instability is triggered by a nonlinear perturbation such as a spiral density shock wave, interstellar clouds can form within a time suggested by observations.  相似文献   

20.
We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Δ z =0.4 we measured the angular correlation function w ( θ ) as a function of redshift up to z ∼4.8. From these measurements we derive the trend of the correlation length r 0. We find that r 0( z ) is roughly constant with look-back time up to z ≃2, and then increases to higher values at z ≳2.4. We estimate the values of r 0, assuming ξ ( r , z )=[ r r 0( z )]− γ , γ =1.8 and various geometries. For Ω0=1 we find r 0( z =3)≃7.00±4.87  h −1 Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号