首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1?×?105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year?1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.  相似文献   

2.
Karst aquifer components that contribute to the discharge of a water supply well in the Classical Karst (Kras) region (Italy/Slovenia) were quantitatively estimated during storm events. Results show that water released from storage within the epikarst may comprise as much as two-thirds of conduit flow in a karst aquifer following rainfall. Principal components analysis (PCA) and end-member mixing analysis (EMMA) were performed using major ion chemistry and the stable isotopes of water (δ18O, δ2H) and of dissolved inorganic carbon (δ13CDIC) to estimate mixing proportions among three sources: (1) allogenic river recharge, (2) autogenic recharge, and (3) an anthropogenic component stored within the epikarst. The sinking river most influences the chemical composition of the water-supply well under low-flow conditions; however, this proportion changes rapidly during recharge events. Autogenic recharge water, released from shallow storage in the epikarst, displaces the river water and is observed at the well within hours after the onset of precipitation. The autogenic recharge end member is the second largest component of the well chemistry, and its contribution increases with higher flow. An anthropogenic component derived from epikarstic storage also impacts the well under conditions of elevated hydraulic head, accounting for the majority of the chemical response at the well during the wettest conditions.  相似文献   

3.
4.
In this paper, the long-term mean annual groundwater recharge of Taiwan is estimated with the help of a water-balance approach coupled with the base-flow-record estimation and stable-base-flow analysis. Long-term mean annual groundwater recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from daily streamflow data obtained from streamflow gauging stations in Taiwan. Mapping was achieved by using geographic information systems (GIS) and geostatistics. The presented approach does not require complex hydrogeologic modeling or detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Contours of the resulting long-term mean annual P, BFI, runoff, groundwater recharge, and recharge rates fields are well matched with the topographical distribution of Taiwan, which extends from mountain range toward the alluvial plains of the island. The total groundwater recharge of Taiwan obtained by the employed method is about 18 billion tons per year.An erratum to this article can be found at  相似文献   

5.
6.
彭凯  刘文  魏善明  刘传娥  陈燕  董浩  苏动  袁炜  韩琳 《中国岩溶》2020,39(5):650-657
文章利用水化学、2H、18O同位素、87Sr/86Sr比值、13C和14C同位素对济南岩溶地下水补给来源、地热水补给来源进行研究。结果表明,岩溶冷水水化学类型以HCO3-Ca、HCO3·SO4-Ca型为主、地热水以SO4-Ca型为主。在旱季,间接补给区对泉群地下水补给比率在66.00%~73.58%之间,直接补给区仅占到26.42%~34.00%,旱季泉水的主要来源为间接补给区岩溶地下水。地热水受到了更新世以来的降水补给,是不同时期降水补给所形成的混合地下水,接受补给区域应为高程较高的张夏或者炒米店-三山子组地层,补给高程在350~550 m之间。  相似文献   

7.
A prerequisite for minimizing contamination risk whilst conducting managed aquifer recharge (MAR) with recycled water is estimating the residence time in the zone where pathogen inactivation and biodegradation processes occur. MAR in Western Australia’s coastal aquifers is a potential major water source. As MAR with recycled water becomes increasingly considered in this region, better knowledge of applied and incidental tracer-based options from case studies is needed. Tracer data were collected at a MAR site in Floreat, Western Australia, under a controlled pumping regime over a distance of 50 m. Travel times for bromide-spiked groundwater were compared with two incidental tracers in recycled water: chloride and water temperature. The average travel time using bromide was 87?±?6 days, whereas the estimates were longer based on water temperature (102?±?17 days) and chloride (98?±?60 days). The estimate of average flow velocity based on water temperature data was identical to the estimate based on bromide within a 25-m section of the aquifer (0.57?±?0.04 m day?1). This case study offers insights into the advantages, challenges and limitations of using incidental tracers in recycled water as a supplement to a controlled tracer test for estimating aquifer residence times.  相似文献   

8.
Thirty-two groundwater samples collected from the Merguellil Wadi basin (central Tunisia) complemented by the Haouareb dam reservoir water samples have been isotopically analysed in order to investigate the implication of the reservoir water to recharging the aquifer, and also to infer the sources, relative ages and mixing processes in the aquifer system. Plots of the stable isotopes data against the local meteoric lines of Tunis-Carthage and Sfax indicate a strong implication of the dam water noticeable up to a distance of 6–7 km. A contribution as much as 80% of the pumped water has been evidenced using isotopic mass balance. In addition, poorly distinguished water clusters in the stable isotope plots, but clearly identified in the diagrams δ18O versus 3H and 3H versus 14C, indicate various water types related to sources and timing of recharge. The isotopic signatures of the dam accounting water, the “old” and “native” recharged waters, have been evidenced in relation to their geographical distribution and also to their radiogenic isotopes (3H and 14C) contents. In the south-western part of the aquifer, mixing process occurs between the dam reservoir water and both the “old” and “native” water components.  相似文献   

9.
齐欢  董梦宇 《中国岩溶》2023,42(5):1037-1046
为查明济南趵突泉地下水补给范围以及市区、西郊对趵突泉的补给范围所占比例,选取2010—2020年趵突泉泉域20个地下水长期监测点的岩溶水位数据,采用交叉小波变换的方法对地下水位与降水量的时滞进行分析,并结合泉水的功能分区对趵突泉地下水补给范围进行探讨,计算市区、西郊对趵突泉的补给范围所占比例。结果表明:(1)随着地下水径流长度的增加,地下水位对降水时滞呈现增大的趋势,从78.58 d增大至129.22 d,济南西郊的时滞变化梯度大于济南市区;(2)玉符河下游地下水补给范围大,径流路径长,河流沿线地下水位对降水量的时滞大于两侧;刘长山−郎茂山−万灵山一带地下水径流路径较短,岩溶富水性较差,地下水位对降水量的时滞小于两侧;济南市区与西郊地下水存在水力联系;(3)选取趵突泉水位与降水量的时滞等值线为趵突泉补给范围的北边界,东边界为东坞断裂,西边界为马山断裂,南边界为地表分水岭,趵突泉的补给范围为1 390.54 km2。(4)济南西郊对趵突泉的补给范围为1 133.09 km2,市区对趵突泉的补给范围为257.45 km2,西郊和市区对趵突泉的补给范围面积比值为4.4∶1。  相似文献   

10.
The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985–2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.  相似文献   

11.
12.
The Qingmuguan subterranean river system is located in the suburb of Chongqing, China, and it is the drinking water source that local people downstream rely on. The study aims to provide a scientific basis for groundwater protection in that area, using a hydrogeological framework, tracer tests, hydrological online monitoring, and hydrochemical and microbiological investigation, including heterotrophic plate count (HPC) and the analysis of denitrifying bacteria (DNB) and nitrobacteria (NB). The tracer tests proved simple and direct connections between two important sinkholes and the main springs, and also proved that the underground flows here are fast and turbulent. DNB and NB analyses revealed that the main recharge to the underground river in the dry season is the soil-leached water passing through the fissures of the epikarst, while in the rainy season, it is the surface water flow through sinkholes. The hydrochemical and microbiological data confirmed the notable impact of agriculture and sewage on the spring water quality. In the future, groundwater protection here should focus on targeted vulnerability mapping that yields different protection strategies for different seasons.  相似文献   

13.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

14.
15.
16.
17.
再生水在北京被广泛用于补给河道,2007年底至2017年共有2.3×108 m3再生水补给至潮白河顺义段。其污染物本底值较高(Cl−浓度约62~122 mg/L),通过河床入渗补给到周边的含水层中,对周边地下水产生一定影响,尤其是浅层地下水。为了定量评价再生水补给河道对周边浅层地下水的影响,基于10年(2007—2017)的地下水监测数据,建立了再生水补给河道周边的地下水水流和溶质运移模型,模拟了受水区浅层地下水的水位和Cl−浓度的变化,分析了浅层地下水水量、Cl−负荷和NO3-N负荷的变化。结果表明,再生水补给河道后的前2年(2007—2009),河道周边浅层地下水水位迅速抬升了3~4 m,之后在再生水的持续补给下保持稳定。但受深层地下水开采影响,2007—2014年研究区整体浅层地下水的水量仍在下降。2014年底实施地下水压采措施后,浅层地下水水量从2014年底的3.76×108 m3恢复到了2017年底的3.85×108 m3。周边浅层地下水中的Cl−浓度从再生水补给前的5~75 mg/L变化到了补给后的50~130 mg/L,之后保持稳定。浅层地下水水质受再生水影响的范围从2008年底的11.7 km2扩大到2017年的26.7 km2,影响区内的Cl−负荷从2008年底的1.8×103 t增加到2017年底的3.8×103 t,NO3-N负荷从2008年的29.8 t下降到2017年的11.9 t。尽管研究显示影响范围外的浅层地下水质受再生水影响不明显,但潜在的咸化和污染的隐患不容忽视,需要在后续研究中进一步明确。  相似文献   

18.
19.
The stable isotopes of oxygen and hydrogen were used to determine the seasonal contributions of precipitation to groundwater recharge at a forested catchment area in the upper North Han River basin, Korea. A comparison of the stable isotopic signatures of groundwater and precipitation indicates that the precipitations which occurred during both the dry and rainy seasons are the important source of groundwater recharge in this region. A stable isotopic signature shown in the stream waters at the upstream reaches is similar to that of groundwaters, indicating that stream waters are mostly fed by groundwater discharge. Reservoir waters in the downstream flood control dams have lower deuterium excess values or d-values compared with those of the upstream waters, indicating a secondary evaporative enrichment. These results can provide a basis for the effective management of groundwater and stream water resources in the North Han River basin.  相似文献   

20.
An isotopic and chemical study was conducted on precipitation, spring water, streams, groundwater wells and submarine groundwater discharge (SGD) to constrain the recharge areas and flow paths of SGD. The isotopic values of precipitation were used to determine the local meteoric water lines (LMWLs) of Rishiri Island. The d-excess values of precipitation showed seasonal variation, with lows of 2.5‰ in the summer and highs of 24.2‰ in the winter. The d-excess values of spring water, streams, groundwater wells and SGD ranged from 12.5‰ to 23.0‰, indicating that the resulting waters were a mix of two seasons of precipitation. The isotopic composition of the groundwater wells sampled along the coast and SGD showed more negative values than that of the spring water sampled along the coast. This indicated that SGD recharged at high altitudes and flowed into the sea. The isotopic and chemical composition of SGD indicated unidirectional flow from land to sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号