首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   

2.
Remotely-sensed elevation data are potentially useful for constructing regional scale groundwater models, particularly in regions where ground-based data are poor or sparse. Surface-water elevations measured by the Shuttle Radar Topography Mission (SRTM) were used to develop a regional-groundwater flow model by assuming that frozen surface waters reflect local hydraulic head (or groundwater potential). Drainage lakes (fed primarily by surface water) are designated as boundary conditions and seepage lakes and isolated wetlands (fed primarily by groundwater) are used as observation points to calibrate a numerical flow model of the 900 km2 study area in the Northern Highland Lakes Region of Wisconsin, USA. Elevation data were utilized in a geographic information system (GIS) based groundwater-modeling package that employs the analytic element method (AEM). Calibration statistics indicate that lakes and wetlands had similar influence on the parameter estimation, suggesting that wetlands might be used as observations where open water elevations are unreliable or not available. Open water elevations are often difficult to resolve in radar interferometry because unfrozen water does not return off-nadir radar signals.  相似文献   

3.
4.
We present a study of the inneralpine basin of Hopfgarten focused on the analysis of basin fill in order to reveal its formation in relation to paleo-ice flow and tectonics. The study is based on geological mapping as well as seismic (reflection and refraction) and geoelectrical surveys. The oldest sequence in the basin, identified by seismic stratigraphy at 400 m below surface, consists of coarse grained sediments of supposedly Oligocene to Miocene age, which subsided along faults linked to the Inn fault. Three superimposed sequences, each displaying baselaps in contact with a subglacially formed unconformity and sigmoid foresets, show pleniglacial conditions followed by a glaciolacustrine environment. The uppermost of these three sequences lies on top of last glacial maximum till (LGM; Würmian Pleniglacial; MIS 2) and represents Termination I. The middle sequence is classified as Termination II following the Rissian Pleniglacial (MIS 6). The oldest glacial sequence cannot be constrained chronostratigraphically but might correlate with Termination V following the major glaciation of MIS 12. Limited glacial erosion during the LGM occurred only during the ice build-up phase. Further overdeepening was impeded due to topographic barrier and mutual blockades of glaciers within this highly dissected landscape. The occurrence and relative timing of the impediment was controlled by the onset of transfluences and thus by the altitude of coles. The higher amount of overdeepening during older glacial periods is explained by longer phases of free ice advance in the ice build up phase due to higher transfluences routes at that time. Thus, the preservation of older Pleistocene sequences within the basin may be the result of the lowering of watersheds from one glaciation to the next. Our model of an inverse relationship between glacial shaping of the surface and the subsurface may apply to similar Alpine landscapes as well.  相似文献   

5.
北京市平谷盆地地下水三维数值模拟及管理应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为缓解北京城区的用水紧张问题,平谷区建立了王都庄和中桥两个应急水源地。持续过量的开采导致盆地内水位急剧下降。为研究大规模开采对平谷盆地地下水系统的影响,并分析不同地区的开采潜力,本文建立了合理刻画三维地下水流动特征的数值模型,对五种不同的开采方案进行模拟。模拟结果表明,丰水条件下地下水位回升明显,王都庄水源地补给条件优越,尤其是盆地上游地区,具有更大的开采潜力;而盆地中下部应适当限制开采,避免水位下降过快。高仿真的数值模型可作为强有力的管理辅助工具,为地下水资源分析及合理利用提供科学的技术支持。  相似文献   

6.
7.
8.
As established in the European Water Framework Directive, the development of groundwater numerical models is fundamental for adopting water management plans aimed at preserving the water resource and reducing environmental risks. In this paper, authors present a methodology for the estimation of groundwater resource of an alluvial valley, in an urban area characterized by a complex hydrostratigraphic setting and scarcity of hydrogeological data; the study area is the urban and sub-urban area of Rome (Italy). A previous, elaborated hydrostratigraphic model set the base for the development of 3D, steady state, sub-basin scale numerical model, implemented by the finite-difference code MODFLOW 2000®; the water system components were derived by elaboration of available data. The alluvial aquifer of the Tiber River Valley, which runs in the middle of the City in a NNW–SE direction, has been analyzed in detail, since it is covered by a densely populated area hosting most of Rome’s historical heritage, and it is characterized by low quality geotechnical parameters. Results suggest that in areas with high hydrostratigraphic complexity and scarcity of hydrogeological data, a sub-basin scale, and steady-state numerical model can be very helpful to verify the conceptual model and reduce the uncertainty on the water budget components. The proposed steady-state model constitutes the base for future applications of transient state and local scale models, required for sustainable water management.  相似文献   

9.
10.
The study investigates the mechanism of glacial meltwater recharge under the Fennosciandian Ice Sheet during the last glacial maximum (LGM) and its impact on regional groundwater flow in the northern Baltic Artesian Basin (BAB) in Estonia and Latvia. The current hypothesis is that a flow reversal occurred in the BAB due to subglacial recharge during the LGM. This hypothesis is supported by an extensive dataset of geochemical and isotopic measurements in the groundwater of northern Estonia, exhibiting significant depletion in δ18O with respect to modern precipitation. To verify the consistency of this hypothesis and better understand groundwater flow dynamics during the LGM period, a numerical model is developed for this area. Two cross-sectional models have been created across the northern BAB, in which groundwater flow and the transport of δ18O have been simulated from the beginning of the LGM to present-day. Several simulations were performed with different subglacial boundary conditions, to investigate the uncertainty related to subglacial recharge of meltwater during the LGM and the subsequent flow reversal in the northern BAB. Several simulations provide a satisfying fit between computed and observed values of δ18O, which means that the hypothesis of subglacial recharge of meltwater is consistent with δ18O distribution. The numerical model suggests that preservation of meltwater in northern Estonia is controlled by confining layers and the proximity to the outcrop area of aquifers, located in the Gulf of Finland. The results also suggest that glacial meltwater has been preserved under the Baltic Sea in the Gulf of Riga.  相似文献   

11.
The groundwater downstream of a former sewage irrigation farm in Berlin is contaminated with ammonium (NH4 +) and para-toluenesulfonamide (p-TSA), besides other anthropogenic pollutants. In the field, in situ removal of NH4 + by gaseous oxygen (O2) and air injection is currently being tested. A laboratory column experiment using aquifer material and groundwater from the site was performed to determine whether this remediation technology is also feasible to reduce high p-TSA concentrations in the anoxic groundwater. First, the column was operated under anoxic conditions. Later, compressed air was introduced into the system to simulate oxic conditions. Samples were collected from the column outlet before and after the addition of compressed air. The experiment revealed that whereas p-TSA was not removed under anoxic conditions, it was almost fully eliminated under oxic conditions. Results were modelled using a transient one-dimensional solute transport model. The degradation rate constants for p-TSA increased from 2.8E−06 to 7.5E−05 s–1 as a result of microbial adaption to the change of redox conditions. Results show that O2 injection into an anoxic aquifer is a successful strategy for p-TSA remediation.  相似文献   

12.
Fortyfive new K-Ar ages and Sr isotope data on amphiboles, biotites, clinopyroxenes and whole rock samples from subvolcanic dykes south of the Tauern Window establish, that alkalibasaltic dykes were intruded 30 m.y. ago and shoshonitic volcanism occured between 30 and 24 m.y. ago. Two calc-alkaline rocks of high-potassium composition yielded ages of 40 and 26 m.y. resp., a spread which may or may not be real. Calc-alkaline dykes with medium and low potassium contain excess argon and are hence undatable. Alkalibasaltic dykes have 87Sr/86Sr ratios of 0.7056–0.7070, shoshonitic rocks 0.7075–0.7133, potassium rich calc-alkaline dykes 0.7077–0.7100. 87Sr/86Sr of all other calc-alkaline rocks scatter between 0.7074 and 0.7150. Sr data indicate that dykes studied do not represent closed Sr systems, but that Sr characteristics result from selective strontium assimilation en route to surface. Primary Sr isotopic ratios of alkalibasaltic dykes point to an origin of these rocks in enriched sub-continental upper mantle. The source region of shoshonitic and high-potassium calcalkaline rocks could have 87Sr/86Sr around 0.707, which is assigned to the input of a component rich in alkalies, LREE and LIL elements. Genetic relationships with other Tertiary magmatites of similar geotectonic position are explained in terms of plate tectonic models of the Eastern Alps.  相似文献   

13.
Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies due to the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. An integrated modeling methodology has been developed for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada (USA), a proposed underground repository site for storing high-level radioactive waste. The approach integrates moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain’s highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations through analyzing flow patterns in the unsaturated zone. In particular, this model provides clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain’s flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.  相似文献   

14.
The aquifer of the semi-arid Kairouan plain has been exploited for decades to supply the growing irrigated agriculture and the need of drinking water. In parallel, the major hydraulic works drastically changed the natural groundwater recharge processes. The continuous groundwater level drop observed since the 1970s naturally raises the question of groundwater storage sustainability. To date, hydrogeological studies focused on groundwater fluxes, but the total amount of groundwater stored in the aquifer system has never been fully estimated. This is the purpose of the present paper. A complete database of all available geological, hydrogeological and geophysical data was created to build a 3D lithology model. Then, the lithological units were combined with the hydraulic properties to estimate the groundwater storage. Over the 700 km2 of the modelled area, the estimated storage in 2013 was around 18?×?109 m3 (equivalent to 80 times the annual consumption of 2010) with a highly variable spatial distribution. In 45 years (1968–2013), 12% of the amount of groundwater stored in the aquifer has been depleted. According to these results, individual farms will face strong regional disparities for their access to groundwater in the near future.  相似文献   

15.
A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ~80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.  相似文献   

16.
在分析大区域地下水流数值模型构建缘起的前提下,系统论述了近年来地下水流数值模拟在大区域地下水资源评价、水文地质参数确定、地面沉降、溶质运移、海水入侵、盐渍化、风险评估、地下水管理及地表水与地下水的联合开发利用等方面的国内外研究应用现状;归纳、总结了目前大区域地下水流数值模型在灵敏度分析、裂隙和岩溶介质中模型建立、基于地下水流数值模拟的溶质运移模型建立、地下水流数值模型构建所需工作量等理论和方法研究及实际建模过程中存在的一些问题;展望了今后大区域地下水流数值拟在研究范围、模拟技术与方法以及与其它模型耦合等方面的发展趋势。  相似文献   

17.
Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality.  相似文献   

18.
Fundamental knowledge of groundwater systems in areas of permafrost is often lacking. The likelihood of finding good quality groundwater resources of acceptable quantities generally decreases as the areal coverage of permafrost increases. In areas of continuous permafrost, the probability of finding areas of groundwater recharge and discharge are minimal. Still, in northeastern Alaska (USA), the presence of numerous springs and associated downstream aufeis formations clearly indicates that there has to be a groundwater system with the required complementary areas of groundwater recharge and transmission. Recharge zones and transmission pathways in this area of extensive permafrost, however, are essentially unknown. This study shows that the recharge occurs on the south side of the Brooks Range in northeastern Alaska, where extensive limestone outcrops are found. The transmission zone is beneath the permafrost, with discharge occurring through the springs via taliks through the permafrost (where faults are present) and also likely at the northern edge of the permafrost along the Beaufort Sea coast.  相似文献   

19.
Groundwater flow in fractured rocks is modeled using a coupled model based on the domain decomposition method. In the model, the fractured porous medium is divided into two non-overlapping sub-domains. One is the rock matrix, in which the medium is described using a continuum model. The other consists of deep fractures and fissure zones, where the medium is described using a discrete fracture network (DFN) model. The two models are coupled through the continuity of the hydraulic heads and fluxes on the common boundaries. The coupled model is used to simulate groundwater flow in a hydropower station. The results show that the model simulates groundwater levels that are in agreement with the measured groundwater levels. Furthermore, the model’s parameters relating to deep fractures and fissure zones are verified by comparing three different models (the continuum model, coupled model, and DFN model). The results show that the coupled model can capture and duplicate the hydrogeological conditions in the study domain, whereas the continuum model overestimates and the DFN model underestimates the measured hydraulic heads. A sensitivity analysis shows that fracture aperture has a considerable effect on the groundwater level. So, when the fracture aperture is large, the coupled model or DFN model is more appropriate than the continuum model in the fracture domain.  相似文献   

20.
A numerical representation that explicitly represents the generalized three-dimensional anisotropy of folded fractured-sedimentary rocks in a groundwater model best reproduces the salient features of the flow system in the Shenandoah Valley, USA. This conclusion results from a comparison of four alternative representations of anisotropy in which the hydraulic-conductivity tensor represents the bedrock structure as (model A) anisotropic with variable strikes and dips, (model B) horizontally anisotropic with a uniform strike, (model C) horizontally anisotropic with variable strikes, and (model D) isotropic. Simulations using the US Geological Survey groundwater flow and transport model SUTRA are based on a representation of hydraulic conductivity that conforms to bedding planes in a three-dimensional structural model of the valley that duplicates the pattern of folded sedimentary rocks. In the most general representation, (model A), the directions of maximum and medium hydraulic conductivity conform to the strike and dip of bedding, respectively, while the minimum hydraulic-conductivity direction is perpendicular to bedding. Model A produced a physically realistic flow system that reflects the underlying bedrock structure, with a flow field that is significantly different from those produced by the other three models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号