首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
减压井机械淤堵机制与防治方法试验研究   总被引:1,自引:0,他引:1  
吴昌瑜  张伟  李思慎  朱国胜 《岩土力学》2009,30(10):3181-3187
探讨了长江堤防减压井由于设计、施工及运行环境等因素对其产生机械淤堵的影响,研究了不同渗流介质的渗透特性以及多种介质不同组合的综合特性。除传统试验外,自行研制了径向渗透试验模型装置,采用几种物理试验方式配合,对包括地层、反滤层、滤网和井管组成的整个减压井系统,以及径向的水流与几何条件进行模拟试验。通过对室内试验与现场测试成果的综合分析,对减压井机械淤堵机制和淤堵判定进行了归纳,针对实际水动力条件和运行模式,提出了减压井反滤系统防止机械淤堵的优化设计理念。  相似文献   

2.
张旭  郭家轩 《探矿工程》2021,48(11):66-71
经过20多年的发展,定向水平井连通法开采技术虽已日渐成熟,被广泛应用到采卤、采碱等水溶开采领域,但在开采生产过程中经常出现由各种原因引起的井堵现象。宁晋石盐田4对卤井,自连通投产后多次发生堵塞,经过修治后运行一段时间再次出现井堵,频繁井堵致使卤井采卤周期短、经济效益差。针对该区采卤井频繁堵塞情况,结合钻修井过程遇到的各种事故和采卤车间提供的相关数据,经过认真分析总结,主要从盐层蠕变挤破套管、夹石岩粉等杂物沉淀和盐结晶堵塞通道3个方面,阐述了宁晋石盐田的井堵原因及预防措施,可为以后卤井修井及新建卤井提供参考。  相似文献   

3.
Well bore clogging is caused by accumulation of particles on the well bore. However, all abstracted groundwaters contain particles, but not all wells clog. Apparently, clogging is not caused by the mere presence of particles, but other factors are also involved. Results from on-line well-head readings demonstrate that the clogging rate is not constant: the specific capacity decreases during long abstraction periods and remains constant during intermittent abstraction. Results of particle counts reveal that the particle concentration in the abstracted groundwater shows a peak immediately after switching on the well. This concentration peak is caused by the removal of particles from the well bore that accumulated during the preceding abstraction period. As long as all accumulated particles are removed, no clogging will occur; if not, clogging will occur. Consequently, well bore clogging can be prevented by switching the pump on and off with sufficient frequency to remove the particles accumulated on the well bore during the preceding abstraction period. Moreover, this explanation leads to additional recommendations for well operation, well construction and well design to prevent well bore clogging.  相似文献   

4.
Wellbore instability, particularly in shale formations, is regarded as a major challenge in drilling operations. Many factors, such as rock properties, in-situ stresses, chemical interactions between shale and drilling fluids, and thermal effects, should be considered in well trajectory designs and drilling fluid formulations in order to mitigate wellbore instability-related problems. A comprehensive study of wellbore stability in shale formations that takes into account the three-dimensional earth stresses around the wellbore as well as chemical and thermal effects is presented in this work. The effects of borehole configuration (e.g. inclination and azimuth), rock properties (e.g. strength, Young's modulus, membrane efficiency and permeability), temperature and drilling fluid properties (e.g. mud density and chemical concentrations) on wellbore stability in shale formations have been investigated. Results from this study indicate that for low-permeability shales, chemical interactions between the shale and water-based fluids play an important role. Not only is the activity of the water important but the diffusion of ions is also a significant factor for saline fluids. The cooling of drilling fluids is found to be beneficial in preventing compressive failure. However, decreasing the mud temperature can be detrimental since it reduces the fracturing pressure of the formation, which can result in lost-circulation problems. The magnitude of thermal effects depends on shale properties, earth stresses and wellbore orientation and deviation. Conditions are identified when chemical and thermal effects play a significant role in determining the mud-weight window when designing drilling programmes for horizontal and deviated wells. The results presented in this paper will help in reducing the risks associated with wellbore instability and thereby lowering the overall non-productive times and drilling costs.  相似文献   

5.
通过建立三维水热耦合数值模型,对地下水地源热泵系统井群平行抽灌(即抽水井与回灌井平行布置)以及交叉抽灌(即抽水井与回灌井交错布置)两种调度运行模式下,系统运行后的含水层地下水流场及温度场情况进行了模拟计算、分析。结果表明:平行抽灌模式对含水层地下水流场、温度场的影响范围、程度均大于交叉抽灌模式,从系统运行效率以及对地温场的影响方面考虑,交叉抽灌模式均优于平行抽灌模式。  相似文献   

6.
Hydrochemical system analysis (HCSA) is used to better understand the individual state of and spatial patterns in groundwater quality, by addressing the spatial distribution of groundwater bodies with specific origins (hydrosomes) and characteristic hydrochemical zones within each hydrosome (facies). The origin is determined by environmental tracers or geomorphological and potentiometric maps, the facies by combining age, redox and alkalinity indices. The HCSA method is applied to all 206 active public supply well fields (PSWFs) in The Netherlands, resulting in the distinction of nine hydrosomes and eleven facies parameters—age (young, intermediate, old), redox ((sub)oxic, anoxic, deep anoxic, mixed) and alkalinity (very low, low, intermediate and high). The resulting classification of PSWFs provides a means to (1) predict their vulnerability; (2) optimize groundwater-quality monitoring programs; and (3) better delineate groundwater bodies, by considering groundwater origin and flow. The HCSA translates complex hydrochemical patterns into easily interpretable maps by showing PSWFs, groundwater bodies and hydrochemical facies. Such maps facilitate communication between researchers, water resources managers and policy makers and can help to solve complex groundwater resources management problems at different scales, ranging from a single well(field) or region to the national or European scale.  相似文献   

7.

There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p <?0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series.

  相似文献   

8.
结合目前国内外普遍存在的砂岩地层回灌效率低的问题,文章剖析砂岩地层容易发生堵塞的地质构造特性,以及在回灌中由于水敏、速敏等作用引起储层物性变化,固体颗粒逐渐沉淀或被捕获,堵塞孔隙,渗流阻力增大,渗透率降低,使地热流体回灌能力减弱;分析当热储层的孔隙度一定时,不同基质颗粒的粒径成为影响地热流体产能和回灌的主要因素。总结目前在砂岩地层中常见堵塞的类型、成因分析以及解决各类堵塞的方法。  相似文献   

9.
Energy requirements constitute a significant cost in groundwater production and can also add to a large carbon footprint when fossil fuels are used for power. Wind-enabled water production is advantageous as it minimizes air pollution impacts associated with groundwater production and relies on a renewable resource. Also, as groundwater extraction represents a deferrable load (i.e., it can be carried out when energy demands within an area are low), it provides a convenient way to overcome the intermittency issue associated with wind power production. Multiple turbine wind farms are needed to generate large quantities of power needed for large-scale groundwater production. Turbines must be optimally located in these farms to ensure proper propagation of kinetic energy throughout the system. By the same token, well placement must reconcile the competing objectives of minimizing interferences between production wells while ensuring the drawdowns at the property boundary are within acceptable limits. A combined simulation–optimization based model is developed in this study to optimize the combined wind energy and water production systems. The wind farm layout optimization model is solved using a re-sampling strategy, while the well field configuration is obtained using the simulated annealing technique. The utility of the developed model is to study wind-enabled water production in San Patricio County, TX. Sensitivity analysis indicated that identifying optimal placement of turbines is vital to extract maximum wind power. The variability of the wind speeds has a critical impact on the amount of water that can be produced. Innovative technologies such as variable flow pumping devices and aquifer storage recovery must be used to smooth out wind variability. While total groundwater extraction is less sensitive to uncertainty in hydrogeological parameters, improper estimation of aquifer transmissivity and storage characteristics can affect the feasibility of wind-driven groundwater production.  相似文献   

10.
 The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400–535,400 m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103 m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Received, May 1998 / Revised, May 1999 / Accepted, June 1999  相似文献   

11.
地下水源热泵系统常会出现抽水井泵砂、抽水井和回灌井堵塞等问题,影响系统的正常运行或系统效率。以湖北省荆州市某地下水源热泵工程为例,分析了江汉平原广泛分布的卵砾石夹细砂含水层中成孔方法选择、滤料及过滤管设计中存在的问题;指出了目前在过滤管外包不锈钢丝网是防止在细砂层中水井泵砂的有效手段之一,但宜与泥浆密度轻、对地层污染小的反循环成孔工艺配合使用,且仍要根据含水层的颗粒级配曲线选择滤料,发挥滤料的过滤作用,避免过滤压力转移到包网过滤管,以减少抽水井堵塞。  相似文献   

12.
Riverbank filtration (RBF) is a proven treatment step in a multi-barrier method of drinking-water supply at many sites. RBF wells induce a large amount of river water to infiltrate the river base and travel towards the wells, giving the opportunity for mixing of infiltrated surface water and groundwater. Assessment of raw water quality plays an important role in planning and operating a RBF well field. In this context, the determination of the catchment area (and land uses within the catchment) and the ratio of bank filtrate (BF) to raw groundwater (GW) are two prior steps. Transient model simulations were performed in order to study the hydraulic conditions at the RBF well field at Grind near Düsseldorf, Germany. The BF/GW ratio was determined to be 75/25. The flood events in winter, in particular, showed the BF/GW ratio to have high variation. Transient path lines in the well field were used for delineation of the catchment area.  相似文献   

13.
本文通过研究古潜山地下水化学的基本特征及其在时空上的分布规律,结合地质构造史,提出了古潜山地下水在时间上经历了6个水文地质期的演化,在空间上受控于盆地外围燕山、鲁西山区大气降水的输入补给,并发展成为具有渗入起源的溶滤水.并从时空上论证了现代水化学场是以稀释淡化、反向变质为主,并辅以浓缩盐化、正向变质两种格局形成演化的.  相似文献   

14.
地热对井运行系统中回灌井堵塞原因浅析及预防措施   总被引:1,自引:0,他引:1  
人工回灌做为提高地热资源利用率、防止地面沉降、减少尾水排放、实现地热资源的可持续利用的最有效手段,已在地学界达成共识。基岩岩溶裂隙型热储对井回灌取得的良好效果使人们看到了回灌技术的广阔应用前景,但有些热储尤其是孔隙型热储回灌量的衰减问题一直未能得到彻底解决,各种因素引起的堵塞是主要原因。本文根据天津市历年的回灌试验,就造成地热回灌堵塞的多种原因进行了分析,并提出了可能的解决办法。  相似文献   

15.
渗流井取水方式地下水允许开采量计算   总被引:6,自引:0,他引:6  
文章在分析渗流井井流特征的基础上,通过引入等效渗透系数,构建渗流井取水的"渗流—管流"耦合模型,建立了渗流井取水的数学模型,提出了渗流井取水计算模型。以陕西省悖牛川水源地为例,通过水文地质条件的分析,提出悖牛川陕西段河谷区地下水渗流井的开采方式。结合具体的水文地质结构及有关参数,采用地下水流三维有限差分法计算了各渗流井的出水量及其组成。在考虑河流持续断流45d的情况下,计算了断流条件下渗流井出水量的衰减过程,在此基础上,确定了悖牛川陕西段河谷区地下水渗流井开采方式新增允许开采量。  相似文献   

16.
In light of the increasing deterioration of groundwater supplies in Rajasthan, India, rainwater harvesting practices in southern Rajasthan were studied to determine the effects of artificially recharged groundwater on the supply and quality of local groundwater. A physical and geochemical investigation utilizing environmental tracers (δ18O and Cl), groundwater level and groundwater quality measurements, and geological surveys was conducted with two objectives: (1) to quantify the proportion of artificially recharged groundwater in wells located near rainwater harvesting structures and (2) to examine potential effects of artificial recharge on the quality of groundwater in these wells. A geochemical mixing model revealed that the proportion of artificial recharge in these wells ranged from 0 to 75%. Groundwater tracer, water table, and geological data provided evidence of complex groundwater flow and were used to explain the spatial distribution of artificial recharge. Furthermore, wells receiving artificial recharge had improved groundwater quality. Statistical analysis revealed a significant difference between the water quality in these wells and wells determined not to receive artificial recharge, for electrical conductivity and SO 4 . The findings from this study provide quantitative evidence that rainwater harvesting structures in southern Rajasthan influence the groundwater supply and quality of nearby wells by artificially recharging local groundwater.  相似文献   

17.
常红梅 《江苏地质》2007,31(4):315-318
岩、煤层对比是煤田地质勘探工程中的重要工作之一。综合运用岩性段旋回法、测井曲线法、层间距法、标志层法、煤层特征法等对程村井田岩、煤层进行了对比,探讨了针对不同层段采用不同方法组合能取得较好效果,对指导豫北地区岩、煤层对比具有借鉴和指导作用。  相似文献   

18.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   

19.
The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in geochemistry and associated trace element mobilization as well as enhancing advective transport processes.  相似文献   

20.
Clogging of water wells by iron-hydroxide incrustations due to mixing of anoxic and oxic groundwater is a common well-ageing problem. The relation between well operation (on and off), the spatial and temporal variations in hydrochemistry outside and inside a supply well, and the distribution of clogging iron-hydroxides were studied in an artificial recharge well field in the Netherlands. Camera inspection, high-resolution multi-level water sampling outside the well and detailed in-well pH/EC/O2 profiles revealed remarkable patterns. During pumping, the top of the upper well screen abstracted oxic filtrate, although the larger part of the in-well water column was anoxic. The column rapidly turned oxic after shutdown due to a downward short-circuiting of oxic water via the well. Within 15 d it became anoxic due to the slow advance of anoxic lake filtrate created by local changes in flow direction as the neighboring wells continued to pump. Severe clogging occurred where the oxic filtrate entered the well, while half-clogging of the upper well screen occurred due to less inflow of oxic filtrate on the lake side. Transport of iron flocs and bacterial slimes after shutdown seemed to clog the lower part of the well screen. Frequent on/off switching should be avoided in iron-clogged wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号