首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrochemical, multivariate statistical and inverse hydrogeochemical modeling techniques were used to investigate groundwater recharge, flow and the hydrochemical evolution within the Akaki volcanic aquifer system, central Ethiopia. The hydrochemical and multivariate statistical techniques are mutually supportive and the extracted information was analyzed together with environmental isotope data. Results reveal five spatial groundwater zones with defined hydrochemical facies, residence times, stable isotopic signals and hydrochemical evolution. These zones are designated as the (1) Intoto, (2) central, (3) Filwuha fault, (4) south zones and (5) a highly polluted sub-sector identified within the central zone. Both the hydrochemical and multivariate statistical analyses have shown the central sub-sector as being spite of differentially polluted by , Cl and and its tritium content shows recent recharge. Due to the fact that the main recharge source is precipitation, the hydrochemical and environmental isotope data clearly indicated that the central and southern sectors are also recharged from domestic waste water and leakage from water mains and reservoirs. Inverse hydrogeochemical modeling demonstrated reactions of silicate minerals in a CO2 open system and precipitation of kaolinite, chalcedony, and rare calcite satisfy the observed change in water chemistry from north to south following the regional flow direction.

Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Résumé Des techniques relevant de l’hydrochimie, des statistiques multivariées et de la modélisation inverse hydrogéochimique, ont été utilisées dans le cadre de l’étude de la recharge des eaux souterraines, de l’écoulement et de l’évolution hydrochimique dans le système volcanique aquifère d’Akaki au centre de l’Ethiopie. Les techniques hydrochimiques et multivariées se supportent mutuellement et l’information extraite a été analysée avec les données isotopiques environnementales, des temps de résidence, des signaux isotopiques stables et une évolution hydrochimique. Ces zones ont été désignées comme le (1) Intoto, (2) le centre, (3) la faille de Filwuha, (4) les zones sud et (5) un sous-secteur fortement pollué identifié dans la zone centrale. Les analyses statistiques hydrochimiques et multivariées ont montré que le sous-secteur central a été différemment pollué par , Cl et , tandis que la teneur en tritium montre une recharge récente. Malgré le fait que la principale source de recharge soit les précipitations, les données hydrochimiques et isotopiques indiquent clairement que les secteurs centres et sud sont également rechargés par les eaux usées domestiques et les fuites de réservoirs et canalisations d’eau. La modélisation hydrogéochimique inverse a démontré les réactions des minéraux silicatés dans un système ouvert au CO2, et la précipitation de kaolinite, de calcédoine, et la rareté de la calcite satisfont les changements observés dans la chimie de l’eau du nord vers le sud en suivant la direction régionale de l’écoulement.

Resumen Se utilizaron la hidroquímica y técnicas de modelación hidrogeoquímica inversa y estadística multivariada, para investigar la recarga del agua subterránea, el flujo y la evolución hidroquímica, dentro del sistema acuífero volcánico Akaki, Etiopía Central. La hidroquímica y las técnicas estadísticas multivariadas se complementan entre si y la información así extraída se analizó junto con los datos de isótopos ambientales. Los resultados revelan cinco zonas diferentes de agua subterránea, con facies hidroquímicas, tiempos de residencia, improntas isotópicas estables y una evolución hidroquímica definidas. Estas zonas se designan como (1) Intoto, (2) Central, (3) Falla de Filwuha, (4) las Zonas del sur y (5) un sub-sector altamente contaminado identificado dentro de la zona central. Tanto los análisis estadísticos multivariados como la hidroquímica, han mostrado al sub-sector central como contaminado diferencialmente por , Cl y y su contenido de tritio muestra una recarga reciente. A pesar del hecho que la fuente principal de recarga es la precipitación, los datos de hidroquímica y de isótopos ambientales indican que los sectores central y del sur, también se recargan a partir de agua doméstica usada y del goteo de las conducciones del acueducto y de sus reservorios. El modelamiento hidrogeoquímico inverso demostró reacciones de minerales silicatados en un sistema de CO2 abierto, y la precipitación de caolinita, calcedonia, y rara vez de calcita, satisfacen el cambio observado en la química de agua del norte a sur, siguiendo la dirección del flujo regional.
  相似文献   

2.
本文运用数字水文地质概念模型的方法建立了乌鲁木齐河流域北部平原的地下水流模型,并用流量边界与柴窝堡盆地和河谷区的地下水流模型相接,构成一个统一的流域地下水模型,为乌鲁木齐河流域水资源整体规划利用提供了模拟分析工具。北部平原的南部倾斜平原为砂卵砾石组成的大厚度潜水含水层,北部细土平原为多层结构。地下水总体上由南向北径流,天然状态下在交界地带溢出成泉或流入沙漠。目前,地下水循环基本上由人为控制。农田灌溉回归补给量与河流和山前侧向补给量持平;而开采量已是绝对的排泄量。季节性开采造成地下水位季节性大幅度变化。水位的下降使蒸发蒸腾量减少,减轻了由于灌溉造成的土壤盐碱化问题。  相似文献   

3.
Petrological and geochemical data for basic (alkali basalts and hawaiites) and silicic peralkaline rocks, plus rare intermediate products (mugearites and benmoreites) from the Pleistocene Boseti volcanic complex (Main Ethiopian Rift, East Africa) are reported in this work. The basalts are slightly alkaline or transitional, have peaks at Ba and Nb in the mantle-normalized diagrams and relatively low 87Sr/86Sr (0.7039–0.7044). The silicic rocks (pantellerites and comendites) are rich in sanidine and anorthoclase, with mafic phases being represented by fayalite-rich olivine, opaque oxides, aenigmatite and slightly Na-rich ferroaugite (ferrohedenbergite). These rocks were generated after prolonged fractional crystallization process (up to 90–95 %) starting from basaltic parent magmas at shallow depths and fO2 conditions near the QFM buffer. The apparent Daly Gap between mafic and evolved Boseti rocks is explained with a model involving the silicic products filling upper crustal magma chambers and erupted preferentially with respect to basic and intermediate products. Evolved liquids could have been the only magmas which filled the uppermost magma reservoirs in the crust, thus giving time to evolve towards Rb-, Zr- and Nb-rich peralkaline rhyolites in broadly closed systems.  相似文献   

4.
The lithospheric and sublithospheric processes associated with the transition from continental to oceanic magmatism during continental rifting are poorly understood, but may be investigated in the central Main Ethiopian Rift (MER) using Quaternary xenolith-bearing basalts. Explosive eruptions in the Debre Zeyit (Bishoftu) and Butajira regions, offset 20 km to the west of the contemporaneous main rift axis, host Al-augite, norite and lherzolite xenoliths, xenocrysts and megacrysts. Al-augite xenoliths and megacrysts derived from pressures up to 10 kb are the dominant inclusion in these recent basalts, which were generated as small degree partial melts of fertile peridotite between 15 and 25 kb. Neither the xenoliths nor the host basalts exhibit signs of carbonatitic or hydrous (amphibole + phlogopite) metasomatism, suggesting that infiltration of silicate melts resulting in pervasive Al-augite dyking/veining dominates the regional lithospheric mantle. Recent geophysical evidence has indicated that such veining/dyking is pervasive and segmented, supporting the connection of these Al-augite dykes/veins to the formation of a proto ridge axis. Al-augite xenoliths and megacrysts have been reported in other continental rift settings, suggesting that silicate melt metasomatism resulting in Al-augite dykes/veins is a fundamental processes attendant to continental rift development.  相似文献   

5.
An integrated survey program involving geological, hydrogeological and geophysical techniques has been employed to characterize the aquifer geometry, recharge and circulation dynamics of thermal springs within a shallow aquifer system in Ethiopia. The selected springs for the case study are Sodere and Gergedi, which are situated within the tectonically active Main Ethiopian Rift (MER). Geologically, the studied springs are located on Plio-Quaternary volcanic rocks. The geophysical results indicate the presence of subsurface weak zones represented by extensional tectonics and weathering zones which are responsible for thermal water circulation and facilitate recharge from the adjacent surface-water bodies. The structures inferred by the resistivity survey, both sounding and electrical tomography, present contrasts in rock resistivity response. The anomalous zones in the magnetic data are in good agreement with the zones that are revealed by geological mapping and surface manifestation of the thermal water discharge zones. The shallow aquifer of the central MER is under the influence of thermal water, which increases the groundwater temperature and mineral content.  相似文献   

6.
Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability. In this study, field hydraulic characterization was performed by using geo-electric approaches. The relations between electrical-hydraulic (eh) conductivities were modeled hypothetically and calibrated empirically. Correlations were based on the stoch-astic models and field-scale hydraulic parameters were contingent on pore-level parameters. By considering variation in pore-size distributions over eh conduction interval, the relations were scaled-up for use at aquifer-level. Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift. VES datasets were inverted by using the computer code IP2Win. The main result is that ln T=0.537 (ln Fa)+3.695; the positive gradient indicating eh conduction through poresurface networks and a proxy of weathered and clayey materials. An inverse (1/F-K) correlation is observed. Hydraulic parameters determined using such approaches may possibly contri-bute significantly towards sustainable yield management and planning of groundwater resources.  相似文献   

7.
Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical-hydraulic(eh)conductivities were modeled hypothetically and calibrated empirically.Correlations were based on the stochastic models and field-scale hydraulic parameters were contingent on pore-level parameters.By considering variation in pore-size distributions over eh conduction interval,the relations were scaled-up for use at aquifer-level.Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift.VES datasets were inverted by using the computer code IP2Win.The main result is that ln T=0.537(ln Fa)+3.695;the positive gradient indicating eh conduction through pore-surface networks and a proxy of weathered and clayey materials.An inverse(1/F-K)correlation is observed.Hydraulic parameters determined using such approaches may possibly contribute significantly towards sustainable yield management and planning of groundwater resources.  相似文献   

8.
Major ion geochemistry and environmental isotopes were used to identify the origins and the mineralisation processes of groundwater flowing within the three aquifer levels of the multilayer system of the Gafsa-south mining district (Southwestern Tunisia). It has been demonstrated that groundwaters are characterised by a Ca–Mg–SO4 water type. Geochemical pattern is mainly controlled by the dissolution of halite, gypsum and/or anhydrite as well as by the incongruent dissolution of dolomite. δ18O and δ2H values are much lower than the isotopic signature of regional precipitation and fall close to the meteoric water lines, indicating that groundwaters have not been significantly affected by evaporation or mineral–water reactions. The distribution of stable and radiogenic isotopes (δ18O, δ2H, δ13C and 14C) within the aquifer levels suggests that the deep confined aquifer receives a significant modern recharge at higher altitudes, while, the shallow unconfined aquifer has been mainly recharged under cooler paleoclimatic condition, likely during Late Pleistocene and Early Holocene humid periods. However, waters from the intermediate confined/unconfined aquifer have composite isotopic signatures, highlighting that they are derived from a mixture of the two first end-members.  相似文献   

9.
The aquifer system of the Basin of Mexico is the main source of water supply to the Mexico City Metropolitan Zone. Management of the Basin’s water resources requires improved understanding of regional groundwater flow patterns, for which large amounts of data are required. The current study analyses the regional dynamics of the potentiometric groundwater level using a new database called the Basin of Mexico Hydrogeological Database (BMHDB). To foster the development of a regional view of the aquifer system, data on climatological, borehole and runoff variables are part of the BMHDB. The structure and development of the BMHDB are briefly explained and then the database is used to analyze the consequences of groundwater extraction on the aquifer’s confinement conditions using lithology data. The regional analysis shows that the largest drawdown rates are located north of Mexico City, in Ecatepec (a region that has not yet received attention in hydrogeological studies), due to wells that were drilled as a temporary solution to Mexico City’s water-supply problem. It is evident that the aquifer has changed from a confined to an unconfined condition in some areas, a factor that is responsible for the large subsidence rates (40 cm/year) in some regions.  相似文献   

10.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

11.
The Latrobe aquifer in the Gippsland Basin in southeastern Australia is a prime example for emerging resource conflicts in Australian sedimentary basins. The Latrobe Group forms a major freshwater aquifer in the onshore Gippsland Basin, and is an important reservoir for oil and gas in both onshore and offshore parts of the basin. The Latrobe Group and overlying formations contain substantial coal resources that are being mined in the onshore part of the basin. These may have coal-seam-gas potential and, in addition, the basin is considered prospective for its geothermal energy and CO2 storage potential. The impacts of groundwater extraction related to coal-mine dewatering, public water supply, and petroleum production on the flow of variable-density formation water has been assessed using freshwater hydraulic heads and impelling force vectors. Groundwater flows from the northern and western edges towards the central part of the basin. Groundwater discharge occurs mainly offshore along the southern margin. Post-stress hydraulic heads show significant declines near the petroleum fields and in the coal mining areas. A hydrodynamic model of the Latrobe aquifer was used to simulate groundwater recovery in the Latrobe aquifer from different scenarios of cessation of groundwater and other fluid extractions.  相似文献   

12.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

13.
 This paper presents hydrogeological problems occurring during municipal water exploitation and mine dewatering. These activities result in groundwater quantity and quality changes in the fissure-karstic aquifer. Increase of nitrate concentration up to 12 mg NNO3/l due to intensive fertilizer use, and high tritium concentration, show water system impact up to 100 m depth. Intensive water exploitation produces large cones of depression with over 40-m water-level depletion in the Opole region. Flow rates of major components and isotopes have been verified by chemical migration history. Some aspects of the protection policy of this type of aquifer are also discussed. Received: 7 March 1997 · Accepted: 17 November 1998  相似文献   

14.
This paper analyses groundwater resources use and management in the socio-economic context of the Amu Darya River Basin which covers a part of the following landlocked Central Asian countries: Afghanistan, Tajikistan, Turkmenistan and Uzbekistan. These agrarian nations for sustaining their vital agricultural productions started to use groundwater during the recent drought years (1998–2001) because of its relatively good quality and quantity and as an alternative to highly mineralized surface waters. Present extent of groundwater resources use is discussed with consideration to their reserves, quality, and institutional management and transboundary aspects within the basin. After the collapse of the centralized water resources management system and infrastructure of the former Soviet Union, new underdeveloped systems are being practiced over the whole Amu Darya River Basin. The critical situation of groundwater management in Afghanistan is also discussed. This work attempts to document the management and use of groundwater in the Amu Darya Basin and present time management realities, with fragmented and weak national and regional regulation on groundwater. Special attention is given to groundwater resources in irrigated agriculture, which increased use in all countries of the basin is due to quick access to underground resources and relatively good quality and quantity.  相似文献   

15.
Groundwater abstraction has resulted in spring flow and groundwater base-flow declines in the Hillsborough River system of central Florida, USA. These declines have resulted in reduction of inflows to the Tampa city reservoir as well as likely adverse environmental effects on riverine and estuarine biota. Causes evaluated for the declines include effects of groundwater development, reduced rainfall, and land alterations. The karstic, heterogeneic nature of the area renders groundwater flow modeling an ineffective method for overall evaluation. Therefore, the evaluation of these declines is accomplished through the systematic use of parametric and nonparametric statistical techniques. These techniques include contingency table analysis, linear regression, Kendall-Theil and Mann-Kendall trend analysis, locally weighted regression, Pearson correlation, Kendall-tau correlation, Spearman correlation, runs test, Student’s t test, and the Kruskall-Wallis test. Data evaluated include groundwater withdrawals, rainfall, base flow, streamflow, stream stage, spring flow, and groundwater levels. Additional methods used include double mass analysis, base flow separation, a low-stage trend analysis, data visualization techniques, and water level change maps. The methodical application of these analyses and techniques to the hydrologic and climatic data yields the conclusion that the primary factor causing the spring flow and base-flow declines is lowered groundwater levels caused by over-abstraction.  相似文献   

16.
方良斌 《地下水》2018,(5):9-11
石羊河流域属严重缺水的内陆河地区,流域水资源开发利用严重超过其承载能力,部分区域地下水利用达到174%,致使流域地下水位快速下降,天然植被枯萎死亡,土地沙漠化、盐渍化进程加快,生态十分脆弱,严重危及居民生存。本文基于流域地质结构和水文地质状况,按照地质结构、地下径流特性,对流域地下水盆地进行分区划定,并对流域水资源量进行计算评价,结果表明:石羊河流域地下水主要划分为大靖地下水盆地、武威地下水盆地、永昌地下水盆地、民勤地下水盆地、昌宁地下水盆地和潮水东地下水盆地,经流域地下切面计算和抽水试验验证,区内地下水降水入渗补给量为0.937亿m^3/a,侧向径流补给量为0.086亿m^3/a,合计地下水天然补给量为1.023亿m^3/a。相对误差为0.033亿m^3/a,绝对误差3.23%,分析较为准确,地下水盆地分区合理。研究结果为流域地下开采与保护提供了科学支撑。  相似文献   

17.
A conceptual hydrogeological model of the Mio-Pleistocene deposits in the Almada region, located in the Cenozoic aquifer system of the Lower Tagus Basin (Portugal), has been developed. Though numerous studies have been conducted on its geological features, there have not been enough hydrogeological investigations to define the origin, flow path and the groundwater quality and to understand the coexistence of overlapped interacting aquifers. Therefore, a study is presented here on the occurrences and features of groundwater resources in the Almada region based on an inventory in the field (wells, springs and boreholes), physical and chemical analyses, geologic setting, and tectonic and geomorphologic observations. This aquifer system has long been a source of concern because of the high level of extraction over the last few decades, as well as the progressive degradation of the water quality. Available groundwater resources have been affected by intensive agricultural and industrial activity, as a consequence of incorrect or non-existent hydrogeological knowledge.  相似文献   

18.
The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30?years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic “windows??cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows.  相似文献   

19.
Delineating capture zones of pumping wells is an important part of safe drinking water and well protection programs. Capture zones or contributing areas of a groundwater extraction well are the parts of the aquifer recharge areas from which the wells draw their water. Their extent and location depend on the hydrogeologic conditions such as groundwater recharge, pumping scenario and the aquifer properties such as hydraulic conductivity, porosity, heterogeneity of the medium and hydraulic gradient. Different methods of delineation can be used depending on the complexity of the hydrogeologic conditions. In this study, a 3-dimensional transient numerical MODFLOW model was developed for the Central Passaic River Basin (CPRB), and used with a MODPATH particle tracking code to determine 3-dimensional transient capture zones. Analytically calculated capture zones from previous studies at the site were compared with the new numerically simulated capture zones. The study results revealed that the analytical solution was more conservative, estimating larger capture zones than the numerical models. Of all the parameters that can impact the size, shape and location of a capture zone, the hydraulic conductivity is one of the most critical. Capture zones tend to be smaller in lower hydraulic conductivity areas.  相似文献   

20.
The Selenge River Basin occupies a total area of 447,000 km2, of which 343,000 km2 is located within Mongolia (the remainder is in Russia). The basin is characterized by an extreme continental climate, consisting of harsh, cold, dry winters and short, hot summers. Annual average temperatures are approximately -4°C and annual rainfall ranges from 220 mm to 450 mm.The Selenge River Basin is a critical groundwater resource for Mongolia. Greater than 55% (~1.5 million) of Mongolia’s population resides within the basin and, during 2003, an estimated average of 700,000 m3/day of water was abstracted from the basin’s groundwater system. The basin services Mongolia’s largest cities and industries (including the rapidly expanding mining sector) as well as important traditional pastoral ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号