首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Numerical modelling is increasingly used as a tool for improving management strategies in aquifers and to support the design of comprehensive projects considering natural and anthropogenic processes. Overall, numerical simulation in karstic aquifers poses a major scientific challenge due to the non-Darcian groundwater flow dynamics. In specific cases, the equivalent porous medium approach has shown acceptable results, particularly in poorly karstified aquifers with regional/subregional scales such as this case. The Yucatan coastal karstic aquifer (Mexico) has been defined as a complex regional heterogeneous system, partially confined, thus allowing the discussion of multiple conceptual models. In this research, a two-dimensional numerical model of flow and transport was implemented using SEAWAT for the NW Yucatan aquifer. Four likely conceptual models were audited, calibrated and verified using hydrogeological field data, to select the best one, considering their fit and complexity. The numerical model accuracy was evaluated using the root-mean-square error, Nash Sutcliffe efficiency and the Pearson coefficient. The Akaike information criterion and Bayesian information criterion were included for evaluating the complexity of the numerical models. In addition, the signal of tide propagation into the aquifer was assessed as a proxy to improve the numerical calibration process. Results show that the most complex numerical model has a better calibration than the simpler models, but the model accuracy is worse when compared to less complex numerical models in the verification exercise. This research offers enhancement in the knowledge of numerical modelling in heterogeneous coastal aquifers within a conceptual-model uncertainty setting.

  相似文献   

2.
Karst aquifers can have a complex flow as a result of the formation of large conduits from dissolution features. As a result, a three-dimensional finite-difference groundwater flow model (equivalent porous media) may not apply as the dual porosity nature of karst features and the effects of turbulent flow cannot be directly simulated. Statistical analysis of karst hydrographs of the Trifilia aquifer in Greece showed the existence of a slightly karstified mass with high primary porosity that regulates the flow. An equivalent porous media model was developed to simulate the Trifilia karst aquifer using MODFLOW. Steady state and transient state calibration gave encouraging results for the equivalent porous media approach, which does not consider pipe flow or turbulence. Detailed hydrogeological research conducted in the area helped define the aquifer hydraulic conductivity zones and extent; and flux to/from the aquifer. Only hydraulic conductivity and specific yield were adjusted during calibration, as the flux to/from the system was considered known and applied as boundary conditions. Small mean absolute and RMS piezometric head error of the model under both steady and transient state conditions were achieved.  相似文献   

3.
Hydrogeology Journal - Saltwater intrusion (SWI) is a type of pollution that adversely affects the quality of groundwater in coastal aquifers. The Nile Delta aquifer (NDA) in Egypt contains a large...  相似文献   

4.
In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal.  相似文献   

5.
The inverse problem of seawater intrusion (SWI) is reviewed. It represents a challenge because of both conceptual and computational difficulties and because coastal aquifer models display many singularities: (1) head measurements need to be complemented with density information; (2) salinity concentration data are very sensitive to flow within the borehole. Data problems can be reduced by incorporating the measurement process within model calibration; (3) SWI models are extremely sensitive to aquifer bottom topography; (4) the initial conditions may be far from steady state and depend on the location and type of sea-aquifer connection. Problems with aquifer geometry and initial conditions can be addressed by parameterization, which allows for modification during inversion. The four sets of difficulties can be partly overcome by using tidal response and electrical conductivity data, which are highly informative and provide extensive coverage. Still, SWI inversion is extremely demanding from a computation point of view. Computational improvements are discussed.  相似文献   

6.
In order to study the function, hydrodynamic behavior, and hydraulic properties of the karst aquifers in Izeh, southwest Iran, time series analysis was applied to the precipitation, spring discharge, and piezometric head data of two representative karst systems of Zagros (Ilam-Sarvak and Asmari Formations). Time series analysis was applied to two karst aquifers, those of Asmari and Ilam-Sarvak Formations. The daily precipitations of anticlines were estimated based on the precipitation–elevation function which was applied on digital elevation model (DEM) of the area. The mean estimated daily precipitations were considered in bivariate time series analysis as input data of each karst system. The total length of time series was about 2.7 years, extending from May 2007 to December 2009. During the research, several one-parameter probe data loggers were installed, which daily measure the water surfaces in karst aquifers. Time series analysis was applied for describing Izeh karst aquifers with a focus on both univariate (autocorrelation and spectral analysis) and bivariate (cross-correlation, gain function, and coherency function) methods. The results show that Asmari karst aquifer in Kamarderaz Anticline has a large storage capacity. Because of lacking a well-organized karst network, in the Asmari karst aquifer, baseflow dominates with low contribution of quick-flow. In the Ilam-Sarvak karst aquifer (Shavish and Tanush Anticlines), the karstification occurred in fractures and small diameter conduits, which caused to quick-flow between dense limestone. The Ilam-Sarvak karst aquifer could be regarded as a transition between two extreme types of karst, e.g., highly karstified system and in the opposite, extremely diffused one. The analysis of well hydrograph in Ilam-Sarvak karst aquifer shows that the karst aquifer has a low storage capacity. Unlike Asmari karst aquifer, the fractures and small diameter conduits in Ilam-Sarvak karst aquifer are more enhanced, producing a better developed karst network. Contrary to the typical karst systems, however, diffuse flow and conduit flow coexist in the Asmari Formation.  相似文献   

7.
Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.  相似文献   

8.
Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.  相似文献   

9.
The influence of sea-level rise (SLR) on seawater intrusion (SWI) has been the subject of several publications, which consider collectively a range of functional relationships within various hydrogeological and SLR settings. Most of the recent generalized analyses of SWI under SLR neglect land-surface inundation (LSI) by seawater. A simple analytical method is applied to quantitatively assess the influence and importance of LSI on SLR–SWI problems under idealized conditions. The results demonstrate that LSI induces significantly more extensive SWI, with inland penetration up to an order of magnitude larger in the worst case, compared to the effects of pressure changes at the shoreline in unconfined coastal aquifers with realistic parameters. The study also outlines some of the remaining research challenges in related areas, concluding that LSI impacts are among other important research questions regarding the SLR–SWI problems that have not been addressed, including the effects of aquifer heterogeneities, real-world three dimensionality, and mitigation measures.  相似文献   

10.
The Memphis aquifer in southwestern Tennessee is a confined to semi-confined unconsolidated sand aquifer and is the primary municipal water source for the Memphis metropolitan area. Leakage of modern water from shallow unconfined aquifers through the upper Claiborne confining unit locally degrades water quality in the Memphis aquifer and makes the aquifer more vulnerable to contamination. Major solute chemistry, tritium, and 3H/3He data were used to investigate the source and mixing proportions of modern water in the Memphis aquifer in the Davis well field, Memphis, Tennessee. Water quality in several production wells in the Davis well field has declined over the past 30 years, mainly through increased total dissolved solids, iron, alkalinity, and hardness. Trends in chemical data, tritium, and other hydrogeologic data support a source for the leakage from the Mississippi River Valley Alluvial aquifer. Mixing proportions of alluvial water in production well water obtained by inverse chemical modeling with PHREEQCi range from 7 to 45%. For two of the production wells, MLGW 414 and 432, 3H/3He data yield mixing ratios similar to those obtained from PHREEQCi in three of four cases; the dissimilar ratio is likely due to a poor solution from the PHREEQCi inverse modeling. Modeling of the age distribution obtained from MLGW 414 and 432 using an exponential-piston flow model (EPM) with an inverse solution computer code yielded mixed results. The EPM solution obtained for MLGW 414 converged with difficulty only for a 5-year transit time in the shallow aquifer and is consistent with a source from the Mississippi River Valley Alluvial aquifer; however, the modeled age of the water is greater than that observed. In comparison, the EPM solution for MLGW 432 converged for the 5- and 7-year transit periods in the shallow aquifer and yielded model ages consistent with observed 3H/3He ages; however, the extent of the maximum radii for infiltration source is not consistent with a Mississippi River Valley Alluvial aquifer source. Other potential sources for leakage to MLGW 432 include water from the Fluvial-terrace aquifer migrating along a fault east of the well field or infiltration of water from a lake south of the well field.  相似文献   

11.
许雅琴  张可霓  王洋 《岩土力学》2012,33(12):3825-3832
咸水层CO2地质封存是减少大气中CO2排放量的有效途径。CO2注入率是衡量咸水层中CO2注入能力的有效因素,因此,研究注入速率的变化规律及提高的措施是很有工程价值的。在很多区域,地层的低渗透性限制了CO2的注入率。针对鄂尔多斯盆地的水文地质条件,通过数值模拟,探讨在低渗透性咸水层中提高CO2注入率的途径,包括改变储层中的盐度、采用水平井注入、增加注入井段的长度以及采取水力压裂等工程措施。其中改变储层中的盐度可通过在注入CO2前向储层中注入一定量的水来实现。模拟结果表明,这些方式可以有效地提高CO2注入率,其中水平井改造方式和水力压裂工程措施效果显著,盐度改造措施在地层初始含盐度较高时,会有更好的效果。研究结果可为鄂尔多斯盆地和类似地区的咸水层CO2地质封存项目提供参考。  相似文献   

12.
A detailed water quality analysis was carried out in the quaternary aquifer system of the marginal alluvial plain (Ganga Plain) in Bah Tahsil, Agra district, India. The electrical conductivity of 50 samples each from dug wells, hand pumps and tube wells was analysed for the study of salinity levels in shallow, intermediate and deep aquifers. Out of 50, 20 samples of each were also analysed for other chemical constituents such as Na+, K+, Cl, Fand TDS. The analyses show drastic changes in the salinity levels of shallow, intermediate and deep aquifers. The deep aquifers are more saline compared to the shallow and intermediate aquifers. On the contrary, the concentration of chemical constituents such as Na+, K+, Cl and Fwas more in the shallow aquifers compared to the deep aquifers. Moreover, there is an indication that the salinity and concentration of the above chemical constituents also escalate with time in each aquifer. The chemical constituents such as Na+, K+, Cl, F and TDS range from 51 to 165 mg/l, 1 to 14 mg/l, 224 to 1,459 mg/l, 0 to 1.5 mg/l and 750 to 2,650 mg/l, respectively. Over a 3-year period, the salinity levels have sharply increased and the average F level has increased by 0.1–0.3 mg/l. An attempt has been made here to discuss the factors causing the variation and escalation of chemical constituents and salinity in the water of the three aquifers.  相似文献   

13.
The study presented in this paper constitutes an initial approach to the problematic task of evaluating the effects of possible climate change on natural water recharge to aquifers. To estimate such effects, a purpose-designed mathematical model termed Estimation of Recharge in Over-exploited Aquifers (ERAS) has been used. It enables to simulate the monthly water recharge to an aquifer, provided that prior knowledge of the exploitation to which it is subjected and the variation caused by these two actions on the piezometric level of the aquifer is available. The basic data required for its application are: precipitation, temperature, groundwater extraction, stored groundwater surface and storage coefficient. The main advantage presented by this model is its independence of the mechanism by which water is displaced through the ground and within the unsaturated zone. The ERAS code was applied to four over-exploited karstic aquifers in Alto Vinalopó (Alicante, Spain) with the goal of generating a synthesized series of values for natural groundwater recharge in each of the aquifers for the 100 years of the twentieth century. Each series thus obtained after being grouped into decades was subjected to statistical processing, which revealed that in every case a logarithmically decreasing trend was present.  相似文献   

14.
Hydrological modeling in the karst area,Rižana spring catchment,Slovenia   总被引:1,自引:1,他引:0  
Karst aquifers are known for their heterogeneity and irregular complex flow patterns which make them more difficult to model and demand specific modeling approaches. This paper presents one such approach which is based on a conceptual model. The model was applied in a karst area of the catchment of Rižana spring (200 km2). It is based on the MIKE SHE code and incorporates the main hydrological processes and geological features of the karst aquifer (diffuse and concentrated infiltration, allogenic recharge, quick and slow groundwater flow, shifting groundwater divides and groundwater outflow from the catchment area). Modeling of evapotranspiration and flow in the upper part of the unsaturated zone is more detailed. For the modeling of groundwater flow in the karst aquifer, a conceptual model was applied which uses drainage function for the simulation of groundwater flow through large conduits (karst channels and large fissures). The model was calibrated and validated against the observed Rižana spring discharge which represents a measured response of the aquifer. The results of validation show that the model is able to adequately simulate temporal evolution of the spring discharge, measured by Nash–Sutcliffe coefficient (0.82) as well as overall water balance.  相似文献   

15.
A multi-methodological approach based on monitoring and spatio-temporal analysis of groundwater quality changes is proposed. The presented tools are simple, quick and cost-effective to give service to all sorts of users. The chief purpose of the monitoring network is the detection of the piezometric or potenziometric level in the aquifer. The spatial and multi-temporal analysis of usual chemical and physical data provides both an assessment of the spatial vulnerability of the aquifer to seawater intrusion, defining a salinity threshold between fresh groundwater and brackish groundwater and of the water quality trend in terms of salinity. The evaluation of the salinity trend or of salinity-correlated parameters highlights the effects of groundwater mismanagement. The multiparameter logging provides a rapid groundwater quality classification for each well. The whole approach allows evaluating the effects of current management criteria and designing more appropriate management targets. The Apulian karstic coastal aquifers have been selected as a case study (Southern Italy). Three types of aquifer zones can be distinguished: (1) areas with low vulnerability to seawater intrusion, (2) areas with high vulnerability and (3) areas with variable vulnerability in which the salt degradation largely depends on the ability to manage the well discharge. The water quality degradation caused by seawater intrusion appears to be a combined effect of an anomalous succession of drought periods observed from about 1980 onwards and increased groundwater pumping, particularly during drought periods. A management criterion based on aquifer zones is proposed.  相似文献   

16.
In recent years, voices in Jordan became lauder to exploit the fresh to brackish deep groundwater overlain by fresh groundwater bodies. In this article the implications of such a policy on the existing fresh water bodies are worked out through studying the sources of salinity in the different aquifer systems and the potentials of salinity mobilization by artificial changes in the hydrodynamic regimes. It is concluded that extracting the groundwater of deep aquifers overlain by fresh water bodies, whether the deep groundwater is fresh to brackish, brackish or salty, is equivalent to extracting groundwater from the overlying fresh groundwater bodies because of the hydraulic connections of the deep and the shallow aquifers’ groundwaters. The consequences are even more complicated and severe because exploiting the deep groundwater containing brackish or salty water will lead to refilling by fresh groundwater leaking from the overlying aquifers. The leaking water becomes salinized as soon as it enters the pore spaces of the emptied deep aquifer matrix and by mixing with the deep aquifer brackish or saline groundwater. Therefore, the move to exploit the deep groundwater is misleading and damaging the aquifers and is unjust to future generation's rights in the natural wealth of Jordan or any other country with similar aquifers’ set-up. In addition, desalination produces brines with high salinity which cannot easily be discharged in the highlands of Jordan (with only very limited access to the open sea) because they will on the long term percolate down into fresh water aquifers.  相似文献   

17.
An integrated approach using hydrogeochemical analysis, remote sensing, GIS, and field data was employed to characterize the groundwater resources in southern Wadi Qena, Egypt. Various thematic maps showing topography, lineaments, wadi deposits, slope, and stream networks were combined through GIS analysis to discriminate groundwater potential zones on the valley floor. The resulting map classifies the area into five groups of groundwater potentiality from very high to very low zones, supported by the groundwater level, well locations, and by the results of previous geophysical studies. Thirty-seven groundwater well data were tested from the Quaternary and Nubian Sandstone aquifers and analyzed for physio-chemical parameters. Results of hydrochemical analysis show that water quality varies widely through the aquifers, and groundwater in the Quaternary aquifer shows the highest salinity values and a predominance of Na and Cl in water chemical facies. Overlay GIS maps of alkalinity (SAR and RSC) and salinity hazards (EC and Cl) of the Quaternary aquifer were prepared. The resulting maps show that samples do not present an alkalinity hazard in most areas but are potentially salinity hazard. Therefore, the water is fit for agricultural use with certain restrictions, but is not suitable for direct human consumption because it is either very hard or too saline.  相似文献   

18.
Wadi Zerka Ma’in catchment area is located to the north east of the Dead Sea. It has two types of aquifers: (a) an upper unconfined aquifer and (b) a lower confined aquifer. The two aquifers are separated by a marl aquiclude. A major strike slip fault passes perpendicularly through the two aquifers and the aquiclude layer with embedded normal faults. The aim of the study was to specify the effect of the major strike slip fault on the groundwater chemistry. The spatial variability of the hydrochemical compositions and physiochemical parameters of the groundwater were investigated. It was found that the embedded normal faults, of the strike slip fault, form conduits that allow groundwater to flow from the lower aquifer to the upper aquifer, resulting in mixed groundwater. The ratio of mixing was estimated to be 94 % groundwater from the upper aquifer and 6 % from the lower aquifer. Since groundwater in the lower aquifer is around three times more saline than the upper aquifer, water mixing into the upper water aquifer generates a salinity hazard.  相似文献   

19.
The aim of this article is to assess the main factors influencing salinity of groundwater in the coastal area between El Dabaa and Sidi Barani, Egypt. The types and ages of the main aquifers in this area are the fractured limestone of Middle Miocene, the calcareous sandstone of Pliocene and the Oolitic Limestone of Pleistocene age. The aquifers in the area are recharged by seasonal rainfall of the order of 150 mm/year. The relationship of groundwater salinity against the absolute water level, the well drilling depth, and the ability of aquifer to recharge has been discussed in the present work. The ability of aquifer to locally recharge by direct rainfall is a measure of the vertical permeability due to lithological and structural factors that control groundwater salinity in the investigated aquifers. On the other hand, the fracturing system as well as the attitude of the surface water divide has a prime role in changing both the mode of occurrence and the salinity of groundwater in the area. Directly to the west of Matrouh, where the coastal plain is the narrowest, and east of Barrani, where the coastal plain is the widest, are good examples of this concept, where the water salinity attains its maximum and minimum limits respectively. Accordingly, well drilling in the Miocene aquifer, in the area between El Negila and Barrani to get groundwater of salinities less than 5000 mg/l is recommended in this area, at flow rate less than 10 m3/hr/well. In other words, one can expect that the brackish water is probably found where the surface water divide is far from the shore line, where the Wadi fill deposits dominate (Quaternary aquifer), acting as a possible water salinity by direct rainfall and runoff.  相似文献   

20.
为进一步查明孟加拉国巴拉普库利亚煤矿水文地质特征及含水层间水力联系,为矿井水害防治提供理论依据,以19组水质化验数据为基础,结合含水层及隔水层空间展布特征、井田构造特征、水位历时曲线、水化学类型、氢氧同位素特征等,综合分析新近系UDT含水层、Ⅵ煤顶板含水层、Ⅵ煤含水层之间的水力联系。结果表明,井田北部LDT隔水层局部缺失,为UDT含水层水向含煤地层补给提供了条件;井田北翼煤层顶板含水层与UDT含水层水位变化规律密切相关,且水位相近,初步证明两者存在水力联系;各含水层水均为HCO3-Ca·Na·Mg型,均为低矿化度水,进一步证明各含水层间存在水力循环;聚类分析结果表明各含水层水质存在一定关联度,推演含水层间水力联系程度;氢(δD)氧(δ18O)同位素特征点分布于全球大气降水线附近,表明大气降水是各含水层共同的补给水源。研究成果可以指导孟加拉国巴拉普库利亚煤矿Ⅵ煤层开采时水害防治方向。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号