首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
PROMICS-3 is a plasma experiment flown in the Russian project Interball. It performs three-dimensional (3D) measurements of ions in the energy range 4 eV–70 keV with mass separation and of electrons in the energy range 12 eV–35 keV. The Interball project consists of two main satellites, the Tail Probe and the Auroral Probe, each with one subsatellite. The Interball Tail Probe was launched on 3 August 1995, into a 65° inclination orbit with apogee at about 30 RE. Both main satellites carry identical PROMICS-3 instruments and thus direct comparisons of the particle distributions will be possible once the Auroral Probe is launched. Furthermore, PROMICS-3-Tail is the first instrument measuring the 3D ion distribution function in the magnetospheric boundary layers at high latitudes. In this paper we describe the PROMICS-3 instrument and show initial results from the Tail probe, measurements of the mag-netosheath, plasma sheet, and ring current plasmas.  相似文献   

2.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

3.
We present two case studies in the night and evening sides of the auroral oval, based on plasma and field measurements made at low altitudes by the AUREOL-3 satellite, during a long period of stationary magnetospheric convection (SMC) on November 24, 1981. The basic feature of both oval crossings was an evident double oval pattern, including (1) a weak arc-type structure at the equatorial edge of the oval/polar edge of the diffuse auroral band, collocated with an upward field-aligned current (FAC) sheet of ≈1.0 μA m−2, (2) an intermediate region of weaker precipitation within the oval, (3) a more intense auroral band at the polar oval boundary, and (4) polar diffuse auroral zone near the polar cap boundary. These measurements are compared with the published magnetospheric data during this SMC period, accumulated by Yahnin et al. and Sergeev et al., including a semi-empirical radial magnetic field profile BZ in the near-Earth neutral sheet, with a minimum at about 10–14 RE. Such a radial BZ profile appears to be very similar to that assumed in the “minimum B/cross-tail line current” model by Galperin et al. (GVZ92) as the “root of the arc”, or the arc generic region. This model considers a FAC generator mechanism by Grad-Vasyliunas-Boström-Tverskoy operating in the region of a narrow magnetic field minimum in the near-Earth neutral sheet, together with the concept of ion non-adiabatic scattering in the “wall region”. The generated upward FAC branch of the double sheet current structure feeds the steady auroral arc/inverted-V at the equatorial border of the oval. When the semi-empirical BZ profile is introduced in the GVZ92 model, a good agreement is found between the modelled current and the measured characteristics of the FACs associated with the equatorial arc. Thus the main predictions of the GVZ92 model concerning the “minimum-B” region are consistent with these data, while some small-scale features are not reproduced. Implications of the GVZ92 model are discussed, particularly concerning the necessary conditions for a substorm onset that were not fulfilled during the SMC period.  相似文献   

4.
An electrostatic analyser (ESA) onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD) has obtained the first accurate electron energy spectrum with energies &7 eV-100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies &20–300 keV). The high time resolution (3 s) data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies &7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to &6Re. Pitch-angle distributions of &20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.  相似文献   

5.
We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from X ≅ −15 to −40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz ≅ 0 nT). We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these “exodus channels”. The time profiles for energetic protons and “tracer” O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM= 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.  相似文献   

6.
We performed a statistical analysis of 290–500 keV ion data obtained by IMP-8 during the years 1982–1988 within the earth’s magnetosheath and analysed in detail some time periods withdistinct ion bursts. These studies reveal the following characteristics for magnetosheath 290–500 keV energetic ions: (a) the occurrence frequency and the flux of ions increase with increasing geomagnetic activity as indicated by the Kp index; the occurrence frequency was found to be as high as P ≥ 42% for Kp ≥ 2, (b) the occurrence frequency in the dusk magnetosheath was found to be slightly dependent on the local time and ranged between ≈30% and ≈46% for all Kp values; the highest occurrence frequency was detected near the dusk magnetopause (21 LT), (c) the high energy ion bursts display a dawn-dusk asymmetry in their maximum fluxes, with higher fluxes appearing in the dusk magnetosheath, and (d) the observations in the dusk magnetosheath suggest that there exist intensity gradients of energetic ions from the bow shock toward the magnetopause. The statistical results are consistent with the concept that leakage of magnetospheric ions from the dusk magnetopause is a semi-permanent physical process often providing the magnetosheath with high energy (290–500 keV) ions.  相似文献   

7.
Variations of electron fluxes with energies 300–600 keV in the region of quasitrapping are analyzed using data of the low orbiting Coronas-F satellite. Enhancements in the electron fluxes with energies above 300 keV are observed at the polar boundary of the outer radiation belt. Meteor-3M satellite data, OVATION and AP models of the position of the auroral oval are used to determine the position of analyzed increases in the energetic electrons with respect to the position of the auroral oval. There is a significant number of events when these increases were observed at a few consequent orbits crossing the outer radiation belt boundary. Studied increases in relativistic electron fluxes are localized at the latitudes of the auroral oval. Different mechanisms of formation of observed enhancements are discussed. The possibility of the appearance of increases due to formation of local particle traps is analyzed using Tsyganenko geomagnetic field models. The role of the formation of local particle traps at the boundary of the outer radiation belt and its possible influence to the formation of the outer radiation belt is discussed.  相似文献   

8.
We examine ion flux dropouts detected by INTERBALL-Auroral upon traversal of the auroral zone at altitudes of ≈13 000 up to 20 000 km. These dropouts which we refer to as “gaps”, are frequently observed irrespectively of longitudinal sector and appear characteristic of INTERBALL-Auroral ion spectrograms. Whereas some of these gaps display a nearly monoenergetic character (≈12 keV), others occur at energies of a few hundreds of eV up to several keV. INTERBALL-Auroral data exhibit the former monoenergetic gap variety essentially in the evening sector. As examined in previous studies, these gaps appear related to transition from particle orbits that are connected with the magnetotail plasma source to closed orbits encircling the Earth. The latter gap variety, which spreads over several hundreds of eV to a few keV is often observed in the dayside magnetosphere. It is argued that such gaps are due to magnetospheric residence times well above the ion lifetime. This interpretation is supported by numerical orbit calculations which reveal extremely large (up to several tens of hours) times of flight in a limited energy range as a result of conflicting E × B and gradient-curvature drifts. The characteristic energies obtained numerically depend upon both longitude and latitude and are quite consistent with those measured in-situ.  相似文献   

9.
This paper gives an overview of Cluster observations in the high-altitude cusp region of the magnetosphere. The low and mid-altitude cusps have been extensively studied previously with a number of low-altitude satellites, but only little is known about the distant part of the magnetospheric cusps. During the spring-time, the trajectory of the Cluster fleet is well placed for dayside, high-altitude magnetosphere investigations due to its highly eccentric polar orbit. Wide coverage of the region has resulted and, depending on the magnetic dipole tilt and the solar wind conditions, the spacecraft are susceptible to encounter: the plasma mantle, the high-altitude cusp, the dayside magnetosphere (i.e. dayside plasma sheet) and the distant exterior cusp diamagnetic cavity. The spacecraft either exit into the magnetosheath through the dayside magnetopause or through the exterior cusp–magnetosheath interface. This paper is based on Cluster observations made during three high-altitude passes. These were chosen because they occurred during different solar wind conditions and different inter-spacecraft separations. In addition, the dynamic nature of the cusp allowed all the aforementioned regions to be sampled with different order, duration and characteristics. The analysis deals with observations of: (1) both spatial and temporal structures at high-altitudes in the cusp and plasma mantle, (2) signatures of possible steady reconnection, flux transfer events (FTE) and plasma transfer events (PTE), (3) intermittent cold (<100 eV) plasma acceleration associated with both plasma penetration and boundary motions, (4) energetic ions (5–40 keV) in the exterior cusp diamagnetic cavity and (5) the global structure of the exterior cusp and its direct interface with the magnetosheath. The analysis is primarily focused on ion and magnetic field measurements. By use of these recent multi-spacecraft Cluster observations we illustrate the current topics under debate pertaining to the solar wind–magnetosphere interaction, for which this region is known to be of major importance.  相似文献   

10.
Geomagnetism and Aeronomy - This paper studies the position of the trapping boundary of electrons with energies of &gt;100 keV relative to the equatorial boundary of the auroral oval during a...  相似文献   

11.
Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300–350 km) and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.  相似文献   

12.
We present both statistical and case studies of magnetosheath interaction with the high-latitude magnetopause on the basis of Interball-1 and other ISTP spacecraft data. We discuss those data along with recently published results on the topology of cusp-magnetosheath transition and the roles of nonlinear disturbances in mass and energy transfer across the high-latitude magnetopause. For sunward dipole tilts, a cusp throat is magnetically open for direct interaction with the incident flow that results in the creation of a turbulent boundary layer (TBL) over an indented magnetopause and downstream of the cusp. For antisunward tilts, the cusp throat is closed by a smooth magnetopause; demagnetized ‘plasma balls’ (with scale ∼ few RE, an occurrence rate of ∼25% and trapped energetic particles) present a major magnetosheath plasma channel just inside the cusp. The flow interacts with the ‘plasma balls’ via reflected waves, which trigger a chaotization of up to 40% of the upstream kinetic energy. These waves propagate upstream of the TBL and initiate amplification of the existing magnetosheath waves and their cascade-like decays during downstream passage throughout the TBL. The most striking feature of the nonlinear interaction is the appearance of magnetosonic jets, accelerated up to an Alfvenic Mach number of 3. The characteristic impulsive local momentum loss is followed by decelerated Alfvenic flows and modulated by the TBL waves; momentum balance is conserved only on time scales of the Alfvenic flows (1/fA ∼12 min). Wave trains at fA∼1.3 mHz are capable of synchronizing interactions throughout the outer and inner boundary layers. The sonic/Alfvenic flows, bounded by current sheets, control the TBL spectral shape and result in non-Gaussian statistical characteristics of the disturbances, indicating the fluctuation intermittency. We suggest that the multi-scale TBL processes play at least a comparable role to that of macro-reconnection (remote from or in the cusp) in solar wind energy transformation and population of the magnetosphere by the magnetosheath plasma. Secondary micro-reconnection constitutes a necessary chain at the small-scale (∼ion gyroradius) edge of the TBL cascades. The thick TBL transforms the flow energy, including deceleration and heating of the flow in the open throat, ‘plasma ball’ and the region downstream of the cusp.  相似文献   

13.
The auroral oval concept radically changed the view that existed for a century in geophysics on the patterns in aurora planetary spatial–temporal distributions. The auroral zone, which is located around the geomagnetic pole as a continuous ring at a constant angular distance of ~23°, was replaced by the auroral oval in 1960. The auroral oval spatial position reflects the shape of the Earth’s magnetosphere, which is compressed by the solar wind on the dayside and stretches into the magnetotail on the nightside. The oval is fixed relative to the direction toward the Sun and is located around the geomagnetic pole at altitudes of the upper atmosphere at an angular distance of ~12° at noon and ~23° at midnight. After an animated discussion over several subsequent years, the existence of the auroral oval was accepted by the scientific community as a paradigm of a new science, i.e., solar–terrestrial physics. The oval location indicates the zone where electron fluxes with energies varying from ~100 eV to ~20 keV precipitate into the upper atmosphere and is related to the structure of plasma domains in the Earth’s magnetosphere. The paper describes the scientific studies that resulted in the concept of the auroral oval existence. It has been shown how this concept was subsequently justified in the publications by Y.I. Feldstein and O.B. Khorosheva. The issue of the priority of the auroral oval concept introduction into geophysics has been considered. The statement that the concept of the oval is an archaic paradigm of solar–terrestrial physics has been called into question. Some scientific fields in which the term auroral oval or simply oval was and is the paradigm have been listed.  相似文献   

14.
We have analyzed high time resolution (6 s) data during the onset and the decay phase of several energetic (35 keV) ion events observed near the Earths bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions) and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50–120 keV) energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to 1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF) direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.  相似文献   

15.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   

16.
A case study of the dayside cusp/cleft region during an interval of stationary magnetospheric convection (SMC) on November, 24, 1981 is presented, based on detailed measurements made by the AUREOL-3 satellite. Layered small-scale field-aligned current sheets, or loops, superimposed to a narrow V-shaped ion dispersion structure, were observed just equatorward from the region of the “cusp proper”. The equatorward sheet was accompanied by a very intense and short (less than 1 s) ion intensity spike at 100 eV. No major differences were noted of the characteristics of the LLBL, or “boundary cusp”, and plasma mantle precipitation during this SMC period from those typical of the cusp/cleft region for similar IMF conditions. Simultaneous NOAA-6 and NOAA-7 measurements described in Despirak et al. were used to estimate the average extent of the “cusp proper” (defined by dispersed precipitating ions with the energy flux exceeding 10−3 erg cm−2 s−1) during the SMC period, as ≈0.73∼ ILAT width, 2.6–3.4 h in MLT, and thus the recently merged magnetic flux, 0.54–0.70 × 107 Wb. This, together with the average drift velocity across the cusp at the convection throat, ≈0.5 km s−1, allowed to evaluate the cusp merging contribution to the total cross-polar cap potential difference, ≈33.8–43.8 kV. It amounts to a quite significant part of the total cross-polar cap potential difference evaluated from other data. A “shutter” scenario is suggested for the ion beam injection/penetration through the stagnant plasma region in the outer cusp to explain the pulsating nature of the particle injections in the low- and medium-altitude cusp region.  相似文献   

17.
A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLE and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995). Within the POLE, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude) with an adjacent downward current branch at its polar side at (70.5–71.3°). The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLE and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.  相似文献   

18.
Special methods for processing TV images have been used to study the characteristics of nighttime auroras based on the observations at high-latitude observatories on Spitsbergen. Weak subvisual auroras (SVAs), originating 3°–4° north of brighter auroras in the auroral oval, have been detected in the interval 1900-0400 MLT. The average lifetime of SVAs is approximately 7 min, and the average velocity of the equatorward shift is ~0.6 km/s. SVAs were observed during relatively quiet periods, when the IMF B z component is mainly positive. However, SVAs are not polar-cap auroras since they are oriented from east to west rather than toward the Sun. The optical observations indicate that the SVA intensity is 0.2–0.5 and 0.1–0.3 kR in the 630 and 557.7 nm emissions, respectively. The average ratio of the emission intensities (I 5577/I 6300) is about 0.5. According to the direct satellite observations, the SVA electron spectrum has a maximum at 0.4–1.0 keV. In this case the energy flux of precipitating electrons is approximately an order of magnitude as low as such a flux in brighter auroral arcs in the auroral oval.  相似文献   

19.
The magnetotail lobes are two vast regions between the plasma sheet (PS) and the magnetotail boundary layers at the magnetopause, where the plasma has very low temperature and densities. The open magnetic field lines of the lobes directly couple the ionospheric polar caps with the solar wind (SW) through the magnetosheath. The survey of 576 h INTERBALL-1 measurements in the near (XGSM>−27RE) lobes in October–November 1997 shows that they are populated with plasmas of various origin and properties. Presented and discussed in details are four cases of lobe measurements under different geomagnetic conditions. Discrete plasma structures encountered in the lobes could originate from the PS, from the magnetosheath or the mantle. A ubiquitous picture in the lobes is the registration of ‘clouds’ of anisotropic electrons with energies up to 300–500 eV, with no accompanying ions. The electron distributions are highly variable and complex, with different degree of anisotropy. The earthward flowing electrons originate in the SW, the anisotropy of the electron fluxes reflects the anisotropy of the SW electrons. In some cases the tailward electrons are not only mirrored earthward fluxes but an additional source earthward of the observations is present. The positive spacecraft potential plays a substantial role in modifying the observed electron distributions.  相似文献   

20.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号