首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Thermodynamic and phase equilibrium data for scapolite have been used to calculate CO2 activities (aCO2) and to evaluate the presence or absence of a fluid phase in high-grade scapolite bearing meta-anorthosite, granulites, calc-silicates, and mafix xenoliths. The assemblage scapolite-plagioclase-garnet±quartz may be used to calculate or limit aCO2 by the reaction Meionite+Quartz = Grossular+Anorthite+CO2. Granulites from four high-grade terranes (Grenville Province, Canada; Sargut Belt, India; Furua Complex, Tanzania; Bergen Arcs, Norway) yield aCO2=0.4-1, with most >0.7. For scapolite-bearing granulites from the Furua Complex, in which aCO2≥0.9, calculated H2O activities (aH2O) based on phlogopite dehydration equilibria are uniformly low (0.1–0.2). The aCO2 calculated for meta-anorthosite from the Grenville Province, Ontario, ranges from 0.2 to 0.8. For Grenville meta-anorthosite also containing epidote, the aH2O calculated from clinozoisite dehydration ranges from 0.2 to 0.6. Calc-silicates from the Grenville, Sargur, and Furua terranes mostly yield aCO2< 0.5. The presence of calcite and/or wollastonite provides additional evidence for the low aCO2 in calc-silicates. Samples from six xenolith localities (Lashaine, Tanzania; Eifel, W. Germany; Lesotho; Delegate, Gloucester, and Hill 32, Australia) yield a wide range of aCO2 (0.1 to >1). The calculated fluid activities are consistent with metamorphism (1) in the presence of a mixed CO2−H2O fluid phase in which CO2 is the dominant fluid species but other C−O−H−S species are minor, (2) in the absence of a bulk fluid phase (“fluid-absent metamorphism”), or (3) in the presence of a fluid-bearing melt phase. The results for many granulites and Grenville meta-anorthosite are consistent with the presence of a CO2-rich, mixed CO2−H2O fluid phase. In contrast the relatively restricted and low values of aCO2 for calc-silicates require an H2O-rich fluid or absence of a fluid phase during metamorphism. The range of values for xenoliths are most consistent with absence of a fluid phase. The primary implication of these results is that a CO2-rich fluid accounts for the reduced aH2O in scapolite-bearing granulites. However, scapolite may be stable with a wide range of fluid compositions or in the absence of a fluid phase, and the presence of scapolite is not a priori evidence of a CO2-rich fluid phase. In addition, close association of scapolite-free mafic granulites with scapolite-bearing granulites having identical mineral compositions in the Furua Complex, and the absence of scapolite from most granulite terranes implies that a CO2-rich fluid phase is not pervasive on an outcrop scale or common to all granulite terranes. Contribution No. 474 from the Mineralogical Laboratory, University of Michigan  相似文献   

2.
The occurrence of a charnockitised felsic gneiss adjacent to a marble/calc-silicate horizon at Nuliyam, southern India, has been cited in recent literature as a classic example of the dehydration of crustal rocks resulting from the advective infiltration of CO2-rich fluids generated from a local carbonate source. Petrographic study of the Nuliyam calc-silicate, however, reveals it to consist of abundant wollastonite and scapolite and contain locally discordant veins rich in wollastonite. At the pressure—temperature conditions proposed for charnockite formation in recent studies, 5 kbar and 725°C, this wollastonite-bearing mineral assemblage was stable in the presence of a fluid phase only if X CO2 was near 0.25 and could not have coexisted with the fluid causing biotite breakdown and charnockite development in adjacent rocks (X CO2>0.85). The stable coexistence of wollastonite and scapolite prohibits the calc-silicate from being a source for fluid driving charnockitisation at the required P-T conditions. Textural observations such as the limited replacement of wollastonite by calcite+quartz symplectites and mosaics, are consistent with late fluid infiltration into the calc-silicate. The extensive isotopic, chemical and mineral abundance data of Jackson and Santosh (1992) are re-interpreted and integrated with these observations to develop a model involving the infiltration of an externally derived CO2-rich fluid during high-temperature decompression. Increased charnockite development next to the calc-silicate has arisen because the calc-silicate acted as a relatively unreactive and impermeable barrier to fluid transport and caused fluid ponding beneath antiformal closures. The Nuliyam charnockite/calc-silicate locality is an example of a structural trap in a metamorphic setting rather than a site where charnockite formation can be attributed to local fluid sources.  相似文献   

3.
Calc-silicate boudins from the Rauer Group, East Antarctica, were metamorphosed under granulite facies conditions during late Proterozoic (ca. 1,000 Ma) M3 metamorphism. Boudin cores contain low to moderate aCO 2 assemblages including wollastonite, grossularandradite (grandite) garnet, clinopyroxene, scapolite, plagioclase, quartz±calcite. Petrological and stable isotopic evidence suggests that these core assemblages resulted from pre-peak M3 infiltration of water-rich fluids; there is no evidence for a pervasive fluid phase under peak M3 conditions. The boudins are separated from the surrounding Fe-rich pelites and semi-pelites by a series of concentric, high-variance reaction zones developed under peak M3 conditions. Variations in mineral assemblage, mineral composition and whole rock composition across these zones suggest that they formed by diffusional masstransfer, controlled principally by a chemical potential gradient in Ca across the original calc-silicate-paragneiss lithological boundary. As a consequence of the nearcomplete decarbonation of the calc-silicatesbefore the M3 peak, development of the diffusion-controlled reaction zones did not liberate significant CO2 during granulite facies metamorphism. Similar calcite-poor, low aCO 2 calc-silicate horizons in other granulite facies terrains are unlikely to have been important local fluid sources during deep crustal metamorphism.  相似文献   

4.
Fluid activity ratios calculated between millimeter- to centimeter-scale layers in banded mafic eclogites from the Tauern Window, Austria, indicate that variations in a H 2 O existed between layers during equilibration at P approximately equal to 2GPa and T approximately equal to 625°C, whereas a CO 2 was nearly constant between the same layers. Model calculations in the system H2O–CO2–NaCl show that these results are consistent with the existence of different saturated saline brines, carbonic fluids, or immiscible pairs of both in different layers. The data cannot be explained by the exisience of water-rich fluids in all layers. The model fluid compositions agree with fluid inclusion compositions from eclogite-stage veins and segregations that contain (1) saline brines (up to 39 equivalent wt. % NaCl) with up to six silicate, oxide, and carbonate daughter phases, and (2) carbonic fluids. The formation of crystalline segregations from fluid-filled pockets or hydrofractures indicates high fluid pressures at 2 GPa; the record of fluid variability in the banded eclogite host rocks, however, implies that fluid transport was limited to local flow along individual layers and that there was no large-scale mixing of fluids during devolatilization at depths of 60–70 km. The lack of evidence for fluid mixing may, in part, reflect variations in wetting behavior of fluids of different composition; nonwetting fluids (water-rich or carbonic) would be confined to intergranular pore spaces and would be essentially immobile, whereas wetting fluids (saline brines) could migrate more easily along an interconnected fluid network. The heterogeneous distribution of chemically distinct fluids may influence chemical transport processes during subduction by affecting mineral-fluid element partitioning and by altering the migration properties of the fluid phase(s) in the downgoing slab.  相似文献   

5.
Calc-silicate granulites were examined to evaluate the fluid composition and retrograde metamorphic conditions in the Central Zone of the Limpopo Belt, southern Africa. Quartz deficient assemblages are characterized by minerals such as diopside, forsterite, spinel and/or magnesiohornblende and tremolite in the presence of calcite and dolomite. Although the granulites are Al-poor (Al2O3 is less than or equal to 1.0 wt.%) and dolomitic in composition, they include Al-bearing phases. Phase analyses for the assemblages in the two model systems CaO–MgO–SiO2–H2O–CO2 and CaO–MgO–SiO2–Al2O3–H2O–CO2 provide constraints on fluid compositions in the granulite facies and retrograde metamorphisms in the Limpopo Central Zone. In the presence of amphiboles, isobaric T–X(CO2) phase relations suggest that high X(CO2) conditions were established in the calc-silicate rocks of present study. The phase relations with tschermakitic amphiboles at 0.35 GPa restrict diopside-spinel occurrences in the presence of calcite, dolomite and forsterite within very-high X(CO2) with low a(H2O). The fluid compositions, X(CO2), were effectively buffered by the mineral assemblages during granulite facies metamorphism to subsequent decompression and cooling stages. The presence or absence of retrograde magnesiohornblende and tremolite appeared to be controlled not only by infiltration of H2O-rich fluid during retrograde metamorphism but also Al content in the local bulk rock compositions. The presence of the two-amphibole phases shows that the fluid compositions were locally buffered in the Al-bearing dolomitic granulites. Comparing the calculated X(CO2) values in the present study area and in the Alldays area, a difference of retrograde hydration effects is observed.  相似文献   

6.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

7.
The type and kinetics of metamorphic CO2-producing processes in metacarbonate rocks is of importance to understand the nature and magnitude of orogenic CO2 cycle. This paper focuses on CO2 production by garnet-forming reactions occurring in calc-silicate rocks. Phase equilibria in the CaO–FeO–Al2O3–SiO2–CO2–H2O (CFAS–CO2–H2O) system are investigated using PT phase diagrams at fixed fluid composition, isobaric TX(CO2) phase diagram sections and phase diagram projections in which fluid composition is unconstrained. The relevance of the CFAS–CO2–H2O garnet-bearing equilibria during metamorphic evolution of calc-silicate rocks is discussed in the light of the observed microstructures and measured mineral compositions in two representative samples of calc-silicate rocks from eastern Nepal Himalaya. The results of this study demonstrate that calc-silicate rocks may act as a significant CO2 source during prograde heating and/or early decompression. However, if the system remains closed, fluid–rock interactions may induce hydration of the calc-silicate assemblages and the in situ precipitation of graphite. The interplay between these two contrasting processes (production of CO2-rich fluids vs. carbon sequestration through graphite precipitation) must be considered when dealing with a global estimate of the role exerted by decarbonation processes on the orogenic CO2 cycle.  相似文献   

8.
The H2O and CO2 content of cordierite was analysed in 34 samples from successive contact metamorphic zones of the Etive thermal aureole, Scotland, using Fourier‐transform infrared spectroscopy (FTIR). The measured volatile contents were used to calculate peak metamorphic H2O and CO2 activities. Total volatile contents are compared with recently modelled cordierite volatile saturation surfaces in order to assess the extent of fluid‐present v. fluid‐absent conditions across the thermal aureole. In the middle aureole, prior to the onset of partial melting, calculated aH2O values are high, close to unity, and measured volatile contents intersect modelled H2O–CO2 saturation curves at the temperature of interest, suggesting that fluid‐present conditions prevailed. Total volatile contents and aH2O steadily decrease beyond the onset of partial melting, consistent with the notion of aH2O being buffered to lower values as melting progresses once free hydrous fluid is exhausted. All sillimanite zone samples record total volatile contents that are significantly lower than modelled H2O–CO2 saturation surfaces, implying that fluid‐absent conditions prevailed. The lowest recorded aH2O values lie entirely within part of the section where fluid‐absent melting reactions are thought to have dominated. Samples within 30 m of the igneous contact appear to be re‐saturated, possibly via a magmatically derived fluid. In fluid‐absent parts of the aureole, cordierite H2O contents yield melt–H2O contents that are compatible with independently determined melt–H2O contents. The internally consistent cordierite volatile data and melt–H2O data support the conclusion that the independent P–T estimates applied to the Etive rocks were valid and that measured cordierite volatile contents are representative of peak metamorphic values. The Etive thermal aureole provides the most compelling evidence, suggesting that the cordierite fluid monitor can be used to accurately assess the fluid conditions during metamorphism and partial melting in a thermal aureole.  相似文献   

9.
Mn silicate-carbonate rocks at Parseoni occur as conformable lenses within metapelites and calc-silicate rocks of the Precambrian Sausar Group, India. The host rocks are estimated to have been metamorphosed at uppermost P-T conditions of 500–550°C and 3–4 kbar. The Mn-rich rocks contain appreciable Fe, reflected in the occurrence of magnetite(1) (MnO 1%), magnetite(2) (MnO 15%) and magnetite(3) (MnO 10%). Two contrasting associations of pyroxmangite, with and without tephroite, developed in the Mn silicate-carbonate rocks under isothermal-isobaric conditions. The former assemblage formed in relatively Fe-rich bulk compositions and equilibrated with a metamorphic fluid having a low X CO 2 (<0.2), and the latter equilibrated with a CO2-rich fluid. Rhodochrosite+magnetite(1)+quartz protoliths produced the observed mineral assemblages on metamorphism. Partitioning of major elements between coexisting phases is somewhat variable. Fe shows preference for tephroite over pyroxmangite at the ambient physical conditions of metamorphism. Oxygen fugacity during metamorphism was monitored at or near the QFM buffer in tephroite bearing domains, and the fluid composition was buffered by mineral reactions in respective domains. As compared to other metamorphosed Mn deposits of the Sausar Group, the Mn silicate-carbonate rocks at Parseoni were, therefore, metamorphosed at much lower f O 2 through complex mineral-fluid interactions.  相似文献   

10.
Meta-sedimentary rocks including marbles and calcsilicates in Central Dronning Maud Land (CDML) in East Antarctica experienced a Pan-African granulite facies metamorphism with peak metamorphic conditions around 830 ± 20 °C at 6.8 ± 0.5 kbar which was accompanied by the post-kinematic intrusion of huge amounts of syenitic (charnockitic) magmas at 4.5 ± 0.7 kbar. The marbles and calcsilicates may represent meta-evaporites as indicated by the occurrence of metamorphic gypsum/anhydrite and Cl-rich scapolite that formed in the presence of saline fluids with X NaCl in the range 0.15–0.27. The marbles and calcsilicates bear biotite, tremolite and/or hornblende and humite group minerals (clinohumite, chondrodite and humite) which are inferred to have crystallized at about 650 °C and 4.5 kbar. The syenitic intrusives contain late-magmatic biotite and amphibole (formed between 750 and 800 °C) as well as relictic magmatic fayalite, orthopyroxene and clinopyroxene. Two syenite and two calcsilicate samples contain fluorite. Corona textures in the marbles and calcsilicates suggest very low fluid-rock ratios during the formation of the retrograde (650 °C) assemblages. Biotite in all but two syenite samples crystallized at log(f H 2 O/f HF) ratios of 2.9 ± 0.4, while in the calcsilicates, both biotite and humite group minerals indicate generally higher log(f H 2 O/f HF) values of up to 5.2. A few samples, though, overlap with the syenite values. Log(f H 2 O/f HCl) derived from biotite covers the range 0.5–2.6 in all rock types. Within a single sample, the calculated values for both parameters vary typically by 0.1 to 0.8 log units. Water and halogen acid fugacities calculated from biotite-olivine/orthopyroxene-feldspar-quartz equilibria and the above fugacity ratios are 1510–2790 bars for H2O, 1.3–5.3 bars for HF and 7–600 bars for HCl. The results are interpreted to reflect the reaction of relatively homogeneous magmatic fluids [in terms of log(f H 2 O /f HF)] derived from the late-magmatic stages of the syenites with both earlier crystallized, still hotter parts of the syenites and with adjacent country rocks during down-temperature fluid flow. Fluorine is successively removed from the fluid and incorporated into F-bearing minerals (close to the syenite into metamorphic fluorite). In the course of this process log(f H 2 O /f HF) increases significantly. Chlorine preferably partitions into the fluid and hence log(f H 2 O /f HCl) does not change markedly during fluid-rock interaction. Received: 28 November 1997 / Accepted: 27 April 1998  相似文献   

11.
Phase equilibria in the system CaO–MgO–SiO2–CO2–H2O–NaCl are calculated to illustrate phase relations in metacarbonates over a wide-range of P–T–X[H2O–CO2–NaCl] conditions. Calculations are performed using the equation of state of Duan et al. (Geochim Cosmochim Acta 59:2869–2882, 1995) for H2O–CO2–NaCl fluids and the internally consistent data set of Gottschalk (Eur J Mineral 9:175–223, 1997) for thermodynamic properties of solids. Results are presented in isothermal-isobarical plots showing stable mineral assemblages as a function of fluid composition. It is shown that in contact-metamorphic P–T regimes the presence of very small concentrations of NaCl in the fluid causes almost all decarbonation reactions to proceed within the two fluid solvus of the H2O–CO2–NaCl system. Substantial flow of magma-derived fluids into marbles has been documented for many contact aureoles by shifts in stable isotope geochemistry of the host rocks and by the progress of volatile-producing mineral reactions controlled by fluid compositions. Time-integrated fluid fluxes have been estimated by combining fluid advection/dispersion models with the spatial arrangement of mineral reactions and isotopic resetting. All existing models assume that minerals react in the presence of a single phase H2O–CO2 fluid and do not allow for the effect that fluid immiscibility has on the flow patterns. It is shown that fluids emanating from calc-alkaline melts that crystallize at shallow depths are brines. Their salinity may vary depending mainly on pressure and fraction of crystallized melt. Infiltration-driven decarbonation reactions in the host rocks inevitably proceed at the boundaries of the two fluid solvus where the produced CO2 is immiscible and may separate from the brine as a low salinity, low density H2O–CO2 fluid. Most parameters of fluid–rock interaction in contact aureoles that are derived from progress of mineral reactions and stable isotope resetting are probably incorrect because fluid phase separation is disregarded.  相似文献   

12.
The Whitestone Anorthosite (WSA), located in the Central Gneiss Belt of the south-western Grenville Province, Ontario, exhibits a nearly concentric metamorphic envelope characterized by an increase in modal scapolite, hornblende, epidote and garnet, developed around a core of granulite facies clinopyroxene ± orthopyroxene ± garnet meta-anorthosite. Scapolite- and hornblende-bearing assemblages develop mainly at the expense of plagioclase and pyroxene within the envelope. Stable isotopic and petrological data for scapolite-bearing mineral assemblages within meta-anorthosite constrain the source of carbon responsible for CO3-scapolite formation and the extent of fluid/rock interaction between the anorthosite and adjacent lithologies. Stable isotopic data indicate increasing δ18O and δ13C from core to margin of the meta-anorthosite and for samples from the southern extension of the WSA, where it is ductilely deformed within the Parry Sound Shear Zone (PSSZ). The average δ18OSMOW value (whole rock) for the WSA core is 6.9‰, increasing to 11.5‰ where the WSA is in tectonic contact with marble breccia. The average δ13CPBD value of scapolite in meta-anorthosite from the centre of the WSA is -3.4‰, increasing to -0.5‰ at the eastern (marble) contact. Average values of δ13C for scapolite and whole-rock δ18O for samples from the shear zone are -1.0 and 8.0‰, respectively. Marbles have average δ18O and δ13C values of 19.2 and -0.4‰, respectively. The sulphate content of texturally primary scapolite decreases from the core of the WSA (XSO4= 0.48) to the eastern contact (≤0.05). Texturally late scapolite after plagioclase and garnet tends to be CO3-rich relative to texturally primary scapolite, and some scapolite grains show zoning in the anion site with CO3-enriched rims. Scapolite composition may vary at any scale from a single grain to outcrop. The pattern of isotopic enrichment in 13C and 18O preserved in the eastern margin of the WSA is consistent with marble as the major source of fluid contributing to the formation of the metamorphic envelope. The decrease in XSO4 and increase in XCO3 in scapolite toward the margin of the WSA indicate that the volatile content was reset by, or developed from, a CO2-bearing fluid. Assuming derivation of fluid from marble, minimum fluid/rock values at the margin of the WSA range from 0.03 for the least enriched, to 0.30 for the most isotopically enriched samples. Although marble is not found in immediate contact with samples of sheared meta-anorthosite from the PSSZ, a marble source is also consistent with the C and O isotope composition and anion chemistry of scapolite within these samples.  相似文献   

13.
Calc-silicate rocks occur as elliptical bands and boudins intimately interlayered with eclogites and high-pressure gneisses in the Münchberg gneiss complex of NE Bavaria. Core assemblages of the boudins consist of grossular-rich garnet, diopside, quartz, zoisite, clinozoisite, calcite, rutile and titanite. The polygonal granoblastic texture commonly displays mineral relics and reaction textures such as post kinematic grossular-rich garnet coronas. Reactions between these mineral phases have been modelled in the CaO-Al2O3-SiO2-CO2-H2O system with an internally consistent thermodynamic data base. High-pressure metamorphism in the calc-silicate rocks has been estimated at a minimum pressure of 31 kbar at a temperature of 630d? C with XH2, O ≥ 0.03. Small volumes of a CO2-N2-rich fluid whose composition was buffered on a local scale were present at peak-metamorphic conditions. The P-T conditions for the onset of the amphibolite facies overprint are about 10 kbar at the same temperature. XCo2 of the H2O-rich fluid phase is regarded to have been <0.03 during amphibolite facies conditions. These P-T estimates are interpreted as representing different stages of recrystallization during isothermal decompression. The presence of multiple generations of mineral phases and the preservation of very high-pressure relics in single thin sections preclude pervasive post-peak metamorphic fluid flow as a cause of a re-equilibration within the calc-silicates. The preservation of eclogite facies, very high-pressure relics as well as amphibolite facies reactions textures in the presence of a fluid phase is in agreement with fast, tectonically driven unroofing of these rocks.  相似文献   

14.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

15.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

16.
Fluid inclusions and mineral associations were studied in late-stage charnockitic granites from the Bjerkreim-Sokndal lopolith (Rogaland anorthosite province). Because the magmatic and tectonic evolutions of this complex appear to be relatively simple, these rocks are a suitable case for investigation of the origin and evolution of granulitic fluids. Fluid inclusions, primarily contained in quartz, can be divided into four types: carbonic (type I), N2-bearing (type II), CO2+H2O (type III) and aqueous inclusions (type IV). For each type, the role of leakage and fluid mixing are discussed from microthermometric and Raman spectrometric data. The most striking features of CO2-rich inclusions (the predominant fluid) is the presence of graphite in numerous, trail-bound inclusions (Ib) and its absence in a few isolated, very dense (d=1.16), pure CO2 inclusions (Ia) and in the late carbonic inclusions (Ic). Fluid chronology and mineral assemblages suggest that carbonic Ia inclusions represent the first fluid (pure CO2) trapped at or close to magmatic conditions (T=780–830° C, fO2=10-15 atm and P=7.4±1 kb), outside the graphite stability field. In contrast, type Ib inclusions enclosed graphite particles from a channelized fluid during retrograde rock evolution (P=3–4 kb and T=600° C). Decreases in T-fO2 could explain a progressive evolution from a CO2-rich fluid to an H2O-rich fluid in a closed C–O–H system. However, graphite destabilization observed in type Ic inclusions implies some late introduction of external water during the last stage of retrogression. The main results of this study are the following: (1) a carbonic fluid was present in an early stage of rock evolution (probably in the charnockitic magma) and (2) this granulite occurrence offers good evidence of crossing the graphite stability field during post-magmatic evolution.  相似文献   

17.
Spectacular reaction textures in poikiloblastic scapolitite boudins, within marbles in the continental crust exposed in the Lützow–Holm Complex, East Antarctica, provide insights into the changing fluid composition and movement of fluid along grain boundaries and fractures. Petrographic and geochemical features indicate scapolite formation under contrasting fluid compositions. Core composition of scapolite poikiloblasts (ScpI) are marialitic (Cl = 0.7 apfu) whereas rims in contact with biotite or clinopyroxene are meionite rich. Fine‐grained recrystallized equigranular scapolite (ScpII) shows prominent chemical zoning, with a marialitic core and a meionitic rim (Cl = 0.36 apfu). Scapolite poikiloblasts are traversed by ScpIII reaction zones along fractures with compositional gradients. Pure CO2 fluid inclusions are observed in healed fractures in scapolite poikiloblasts. These negative crystal‐shaped fluid inclusions are moderately dense, and are believed to be coeval with ScpIII formation at temperatures >600 °C and a minimum pressure of c. 3.8 kbar. Grain‐scale LA‐ICPMS studies on trace and rare earth elements on different textural types of scaplolites and a traverse through scapolite reaction zone with compositional gradient suggest a multistage fluid evolution history. ScpI developed in the presence of an internally buffered, brine‐rich fluid derived probably from an evaporite source during prograde to peak metamorphism. Recrystallization and grain size reduction occurred in the presence of an externally sourced carbonate (CaCO3)‐bearing fluid, resulting in the leaching of Cl, K, Rb and Ba from ScpI along fractures and grain boundaries. Movement of fluids was enhanced by micro‐fracturing during the transformation of ScpI to ScpIII. Fractures in fluorapatite are altered to chlorapatite proving evidence for the pathways of escaping Cl‐bearing fluids released from ScpI. The present study thus provides evidence for the usefulness of scapolite in fingerprinting changing volatile composition and trace element contents of fluids that percolate within the continental crust.  相似文献   

18.
Mineral assemblages, rock and mineral chemistry, and mineral reactions, in calc-silicate rocks from Koduru area, Andhra Pradesh, India are discussed. Mineralogical and bulk chemical differences indicate 3 calc-silicate rock types — type I with K feldspar+calcite+wollastonite+quartz+scapolite+diopsidess +andraditess+sphene, has relatively high rock oxidation ratios. Type II is a highly calcic variety with high rock MgFe ratios, and has K feldspar+calcite+wollastonite+quartz+scapolite + diopsidess±grossularitess+sphene+zoisite. Type III has K feldspar +calcite+wollastonite+quartz+scapolite+diopsidess +sphene+hornblende+magnetite, and has relatively low oxidation ratio and low MgFe ratio. The 3 calc-silicate rock types have originated as mixtures of limestone/dolomite/marl.Diopside was produced by a reaction involving Ca-amphibole +calcite+quartz, and reversed during retrogression. Andraditess in type I rocks was produced at the expense of hedenbergitic component of pyroxene in a continuous reaction as a consequence of increase in the oxygen content of the original sediment relative to type III. Calcite+quartz reacted to give wollastonite. During cooling an influx of water caused scapolite to alter to zoisite.  相似文献   

19.
The methamorphic history of the Patapedia thermal zone, Gaspé, Quebec, is re-evaluated in the light of results obtained from a study of fluid inclusions contained in quartz phenocrysts of felsic dyke rocks. The thermal zone is characterised by calc-silicate bodies that have outwardly telescoping prograde metamorphic isograds and display extensive retrograde metamorphism with associated copper mineralization. Three distinct fluid inclusion types are recognized: a low to moderate salinity, high density aqueous fluid (Type I); a low density CO2 fluid (Type II); and a high salinity, high density aqueous fluid (Type III). Fluid inclusion Types I and II predominate whereas Type III inclusions form <10% of the fluid inclusion population. All three fluid types are interpreted to have been present during prograde metamorphism. Temperatures and pressures of metamorphism estimated from fluid inclusion microthermometry and isochore calculations are 450°–500° C and 700–1000 bars, respectively. A model is proposed in which the metamorphism at Patapedia was caused by heat transferred from a low to moderate salinity fluid of partly orthomagmatic origin (Type I inclusions). During the early stages, and particularly in the deeper parts of the system, CO2 produced by metamorphism was completely miscible in the aqueous hydrothermal fluid and locally resulted in high XCO2 fluids. On cooling and/or migrating to higher levels these latter fluids exsolved high salinity aqueous fluids represented by the Type III inclusions. Most of the metamorphism, however, took place at temperature-pressure conditions consistent with the immiscibility of CO2 and the hydrothermal fluid and was consequently accompanied by the release of large volumes of CO2 vapour which is represented by Type II inclusions. The final stage of the history of the Patapedia aureole was marked by retrograde metamorphism and copper mineralization of a calcite-free calc-silicate hornfels in the presence of a low XCO2 fluid.  相似文献   

20.
A microthermometric study of inclusions in granites and pegmatites in the Proterozoic Harney Peak Granite system identified four types of inclusions. Type 1 inclusions are mixtures of CO2 and H2O and have low salinities, on average 3.5 wt.% NaCleq; type 2 inclusions are aqueous solutions of variable salinities, from 0 to 40% wt.% NaCleq; type 3 inclusions are carbonic, dominated by CO2, with no detectable water; and type 4 inclusions consist of 20 to 100% solids, with the remaining volume occupied by a CO2-H2O fluid. Many inclusions have a secondary character; however, a primary character can be unambiguously established in several occurrences of the type 1 inclusions. These inclusions were trapped above the solidus and represent the exsolved magmatic fluid. The secondary populations of types 1, 2, and 3 probably formed as a result of reequilibration and unmixing of the type 1 fluid that progressively changed composition and density with decreasing temperature and pressure and was finally trapped along healed microfractures under subsolidus conditions. Type 4 inclusions are primary and are interpreted to be trapped, fluid-bearing, complex silicate melts that subsequently solidified or underwent other posttrapping changes.It is demonstrated that primary type 1 fluid inclusions that coexist with crystallized melt inclusions in the complex, Li-bearing Tin Mountain pegmatite were trapped along the two-fluid phase boundary in the system CO2-H2O-NaCleq. Consequently, the temperature and pressure conditions of trapping are identical to the bulk homogenization conditions—on average 340°C and 2.7 kbar. These conditions indicate that this Li-, Cs-, Rb-, P-, and B-rich pegmatite crystallized at some of the lowest known temperatures for a silicate melt in the crust. An internally consistent, empirical solvus surface in P-T-XCO2 coordinates was generated for the pseudobinary CO2-(H2O-4.3 wt.% NaCleq) pegmatite fluid system. Distribution coefficients for the major species CO2, H2O, NaCl, and CH4 between the immiscible CO2-rich and H2O-rich fluid phases as a function of pressure and temperature were extracted from data for the two cogenetic fluid inclusions types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号