首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitric acid formed from trans-2-butene, propene, ethene, toluene, and n-butane in single hydrocarbon/NO2/purified air systems was examined in smog chamber experiments. The effect of hydrocarbon and NO2 concentrations on the maximum HNO3 yield, defined as percentages of initial NO2 converted to HNO3, was studied in two sets of experiments. In every hydrocarbon system, we found no effect of hydrocarbon concentration variation on the nitric acid formed. Out of initially added 100 ppb NO2, in the hydrocarbon-rich systems, ethene formed most HNO3 (45%), followed by propene, toluene, and n-butane (24%), and trans-2-butene (13%). When the initial NO2 concentration was varied with a constant hydrocarbon concentration, the amount of HNO3 formed was found to linearly increase with the added NO2 down to |HC|/|NO2| ratios, which depended on the nature of the hydrocarbon studied. The initial rate of HNO3 formation in hydrocarbon excess experiments varied between 50, 35, 23, 16, and 8 ppb/hr for butene, propene, toluene, ethene, and butane systems, respectively.  相似文献   

2.
Measurements of stratospheric NO2 by ground-based visible spectrometers rely on laboratory measurements of absorption cross-sections. We review low-temperature laboratory measurements, which disagree by amounts claimed to be significant. Our recalculation of their errors shows that in general disagreements are not significant and that errors in the ratios of cross-sections at low to room temperature are between ±3% and ±8.8%. Of these errors, up to ±3.5% was contributed by errors in the equilibrium constant,K p, in those measurements where the pressure was above 0.1 mbar.We review measurements and calculations ofK p, which were accurate to ±5% from 300 to 233 K. Each method was potentially flawed. For example, infrared measurements of the partial pressure of NO2 ignored the dependence of absorption on total pressure. From thermodynamic theory, formulae forK pcan be derived from expressions for the variation of heat capacity with temperature. Contrary to common belief, coefficients in the formulae used by spectroscopists were not derived from the thermodynamic quantities. Rather, they were fitted to measurements or to calculations. Hence, they are empirical and it is dangerous to extrapolate below 233 K, the lowest temperature of the measurements.There are no measurements of NO2 cross-sections below 230 K. Extrapolation of these cross-sections to analysis of measurements of NO2 at the low temperatures of the Arctic and Antarctic stratosphere is also dangerous. For satisfactory analysis of polar spectra, the NO2 cross-sections should be measured at temperatures down to 190 K with a relative accuracy of ±1%. This difficult experiment would need a cell of minimum length 32 m whose length can be adjusted. Because their effects are circular, many errors cannot be removed simply. Although circular errors also arise in the measurements ofK pand of the infrared spectrum, their weights differ from those in the visible spectrum. The optimum experiment might therefore simultaneously measure the visible and infrared spectra andK p.  相似文献   

3.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

4.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

5.
Products and mechanisms for the gas-phase reactions of NO3 radicals with CH2=CHCl, CH2=CCl2, CHCl=CCl2,cis-CHCl=CHCl andtrans-CHCl=CHCl in air have been studied. The experiments were carried out at 295±2 K and 740±5 Torr in a 480-L Teflon-coated reaction chamber and at 295±2 K and 760±5 Torr in a 250-L stainless steel reactor. NO3 was generated by the thermal dissociation of N2O5. Experiments with15NO3 and CD2CDCl have also been performed. The initially formed nitrate peroxynitrates decay into carbonyl compounds, nitrates, HCl and ClNO2. In adidtion, there are indications of nitrooxy acid chlorides being produced. The reactions with CH2=CCl2 and CHCl=CCl2 are more complex due to release of chlorine atoms which eventually lead to formation of chloroacid chlorides.A general reaction mechanism is proposed and the observed concentration-time profiles of reactants and products are simulated for each compound. The rate constants for the initial step of NO3 addition to the chloroethenes are determined as: (2.6±0.5, 9.4±0.9, 2.0±0.4 and 1.4±0.4) × 10–16 cm3 molecule–1 s–1 for CH2=CHCl, CH2=CCl2, CHCl=CCl2 andcis-CHCl=CHCl, respectively.  相似文献   

6.
传统的空气质量模型多使用简化的光化学反应机制来模拟大气污染物的形成.这些机制主要基于烟雾箱实验拟合的反应速率和产物来模拟二次产物(如臭氧(O3))前体物的氧化反应,具有一定的不确定性,导致模拟结果产生偏差.针对该问题,本研究将详细的大气化学机理(MCMv3.3.1)与美国国家环境保护局研制的第三代空气质量预报和评估系统CMAQ相结合(CMAQ-MCM),模拟研究长三角地区2015年8月27—9月5日臭氧高发时段的空气质量.CMAQ-MCM模型可以较好地模拟长三角地区6个代表城市O3和其前体物随时间的变化趋势.对模拟的O3日最大8 h平均浓度的统计分析表明,徐州表现最好(标准平均误差=-0.15,标准平均偏差=0.23).在长三角地区,居民源对挥发性有机物(VOCs)的贡献最大,占39.08%,其次是交通运输(33.25%)和工业(25.56%).能源对总VOCs的贡献最小,约为2.11%.对活性氧化氮(NOy)的分析表明,其主要组分是NOx(80%),其次是硝酸(HNO3)(<10%).O3的空间分布与NOy和NOx非常相似.HCHO等其他氧化产物的分布与NOx相似,这很可能是由于在高NOx条件下VOCs氧化产生的产物.甲基乙烯基酮(MVK)和甲基丙烯醛(MACR)的空间分布与自然源VOCs (BVOCs)非常相似,表明长三角地区MVK和MACR主要由BVOCs氧化生成.长三角地区受到人为源和自然源排放相互作用的影响.  相似文献   

7.
In 1997 and 1998 several field campaigns for monitoring non-methane volatile organic compounds (NMVOCs) and nitrogen oxides (NOx) were carried out in a road traffic tunnel and in the city center of Wuppertal, Germany. C2–C10 aliphatic and aromatic hydrocarbons were monitored using a compact GC instrument. DOAS White and long path systems were used to measure aromatic hydrocarbons and oxygenated aromatic compounds. A formaldehyde monitor was used to measure formaldehyde. Chemiluminescence NO analysers with NO2 converter were used for measuring NO and NO2. The high mixing ratios of the NMVOCs observed in the road traffic tunnel, especially 2.9 ppbv phenol, 1.5ppbv para-cresol and 4.4 ppbv benzaldehyde, in comparison with themeasured background concentration clearly indicate that these compounds were directly emitted from road traffic. Para-Cresol was for the first timeselectively detected as primary pollutant from traffic. From the measured data a NMVOC profile of the tunnel air and the city air, normalised to benzene (ppbC/ppbC), was derived. For most compounds the observed city air NMVOC profile is almost identical with that obtained in the traffic tunnel. Since benzene originates mainly from road traffic emission, the comparison of the normalised emission ratios indicate that the road traffic emissions in Wuppertal have still the largest impact on the city air composition, which is in contrast to the German emission inventory. In both NMVOC profiles, aromatic compounds have remarkably large contributions of more than 40 ppbC%. In addtion, total NMVOC/NOx ratios from 0.6 up to 3.0ppbC/ppb in the traffic tunnel air and 3.4± 0.5 in the city air of Wuppertal were obtained. From the observed para-cresol/toluene and ortho-cresol/toluene ratios in the city air, evidence was found thatalso during daytime NO3 radical reactions play an important role in urban air.  相似文献   

8.
Rate constants for the reaction of OH radicals with some branched alkyl nitrates have been measured applying a competitive technique. Methyl nitrite photolysis in synthetic air was used as OH radical source at 295±2 K and 1000 mbar total pressure. Using a rate constant of 2.53×10-12 cm3 s-1 for the reaction of OH radicals with n-butane as reference, the following rate constants were obtained (units: 10-12 cm3 s-1): isopropyl nitrate, 0.59±0.22; isobutyl nitrate, 1.63±0.20; 3-methyl-2-butyl nitrate, 1.95±0.15; 2-methyl-1-butyl nitrate, 2.50±0.15; 3-methyl-1-butyl nitrate, 2.55±0.35. These values have been combined with the literature data to recalculate the substituent factors F(X) for the different nitrate groups which can be used to predict OH rate constants for organic nitrates for which experimental data are not available.Preliminary measurements of the photolysis frequency of isopropyl nitrate have shown that for this nitrate as a model substance, OH reactions and direct photolysis are of equal importance under tropospheric conditions.  相似文献   

9.
The representation of alkene degradation in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated, using environmental chamber data on the photo-oxidation of ethene, propene, 1-butene and 1-hexene in the presence of NOx, from up to five chambers at the Statewide Air Pollution Research Center (SAPRC) at the University of California. As part of this evaluation, it was necessary to include a representation of the reactions of the alkenes with O(3P), which are significant under chamber conditions but generally insignificant under atmospheric conditions. The simulations for the ethene and propene systems, in particular, were found to be sensitive to the branching ratios assigned to molecular and free radical forming pathways of the O(3P) reactions, with the extent of radical formation required for proper fitting of the model to the chamber data being substantially lower than the reported consensus. With this constraint, the MCM v3 mechanisms for ethene and propene generally performed well. The sensitivity of the simulations to the parameters applied to a series of other radical sources and sink reactions (radical formation from the alkene ozonolysis reactions and product carbonyl photolysis; radical removal from the reaction of OH with NO2 and β-hydroxynitrate formation) were also considered, and the implications of these results are discussed. Evaluation of the MCM v3 1-butene and 1-hexene degradation mechanisms, using a more limited dataset from only one chamber, was found to be inconclusive. The results of sensitivity studies demonstrate that it is impossible to reconcile the simulated and observed formation of ozone in these systems for ranges of parameter values which can currently be justified on the basis of the literature. As a result of this work, gaps and uncertainties in the kinetic, mechanistic and chamber database are identified and discussed, in relation to both tropospheric chemistry and chemistry important under chamber conditions which may compromise the evaluation procedure, and recommendations are made for future experimental studies. Throughout the study, the performance of the MCM v3 chemistry was also simultaneously compared with that of the corresponding chemistry in the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.  相似文献   

10.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

11.
The rate of formation of N2O via the thermochemically favourable reaction of NO3(A2E) with N2, which would represent an additional source of stratospheric N2O and therefore NOx, has been investigated. Mixtures of NO2+O3 in synthetic air were photolysed at 662 nm. No evidence was found for the production of N2O via this pathway, the upper limit for the quantum yield of nitrous oxide formation being % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqOXdy2aaSbaaSqaamaaBaaameaadaWgaaqaamaaBaaabaGaamOt% amaaBaaabaGaaGOmaiaad+eaaeqaaaqabaaabeaaaeqaaaWcbeaatu% uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaOGae8hzIqOa% aGimaiaac6cacaaI2aGaaiyjaaaa!4E60!\[\phi _{_{_{_{N_{2O} } } } } \le 0.6\% \]. However, a dark conversion of NOx to N2O was observed and is attributed tentatively to a heterogeneous reaction on the wall of the reaction vessel. This process, although most likely to be insignificant in the atmosphere, needs to be taken into consideration in laboratory investigations or field studies of N2O emission or deposition.  相似文献   

12.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

13.
The photodissociation coefficient of NO2, J NO 2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J NO 2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J NO 2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J NO 2 using a simplified isotropic multiple scattering computer routine.  相似文献   

14.
Rate coefficients for the reactions of difunctional nitrates with atmospherically important OH radicals are not currently available in the literature. This study represents the first determination of rate coefficients for a number of C(3) and C(4) carbonyl nitrates and dinitrates with OH radicals in a 38 l glass reaction chamber at 1000 mbar total pressure of synthetic air by 298±2 K using a relative kinetic technique.The following rate coefficients (in units of 10-12 cm3 molecule-1 s-1) were obtained: 1,2-propandiol dinitrate, <0.31; 1,2-butandiol dinitrate, 1.70±0.32; 2,3-butandiol dinitrate, 1.07±0.26; -nitrooxyacetone, <0.43; 1-nitrooxy-2-butanone, 0.91±0.16; 3-nitrooxy-2-butanone, 1.27±0.14; 1,4-dinitrooxy-2-butene, 15.10±1.45; 3,4-dinitrooxy-1-butene, 10.10±0.50.The possible importance of reaction of OH as an atmospheric sink for the compounds compared to other loss processes is considered.  相似文献   

15.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

16.
Previous experiments in the 400–500 nm region (Coquart et al., 1995) have been extended to the 200–400 nm region to determine the absorption cross-sections of NO2 at 220 K. The NO2 and N2O4 cross-sections are obtained simultaneously from a calculation applied to the data resulting from measurements at low pressures. A comparison between the NO2 cross-sections at 220 K and at ambient temperature shows that the low temperature cross-sections are generally lower, except in the region of the absorption peaks. Comparisons are also made with previous data at temperature close to 220 K.  相似文献   

17.
利用江苏省大气环境监测站点的大气污染物监测数据,分析了2020年初新冠肺炎疫情管控期间(2—3月)主要大气污染物浓度的变化特征。结果显示,相比于2019、2020年疫情管控期间PM2.5、PM10、NO2、SO2、CO浓度的全省平均降幅分别为37.5%、36.9%、31.9%、28.2%和21.2%。严格管控期的2月和生产恢复期的3月,江苏省十三市PM2.5、PM10浓度同比降幅大致相当,呈现出较好的时间连续性和空间均匀性。但各市臭氧浓度同比变化呈现出较大的时空差异。空间上,沿江以南城市南京、无锡、常州、苏州和镇江五市臭氧浓度明显上升,而其他城市臭氧浓度以下降为主;时间上,2月南京等九市臭氧浓度上升,3月徐州等八市臭氧浓度持平或者下降。假设未发生新冠肺炎疫情以及未采取为阻断疫情蔓延而实施的种种举措,在仅考虑近年来大气污染防治政策持续实施的情况下,与预期降幅相比,疫情管控对NO2实况浓度降幅的影响最大,其次是PM2.5  相似文献   

18.
Rate coefficients have been measured for the reactions of hydroxyl radicals with a range of aliphatic ethers by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, isobutene and an ether were photolyzed in a Teflon-bag smog chamber. From the rates of depletion of the ether and of the isobutene, and based on the value of the rate coefficient k(OH+i-C4H8)=5.26×10-11 cm3 molecule-1 s-1, the following rate coefficients were obtained for the hydroxyl radical reactions at 750 Torr and at 294±2K in units of 10-12 cm3 molecule-1 s-1: diethylether = 12.0±1.1, di-n-propylether = 15.3±1.6, di-n-butylether=17.1±0.9, ethyl n-butylether = 13.5±0.4, ethyl t-butyl-ether = 5.6±0.5, and di-isobutylether = 26.1±1.6. The quoted error limits correspond to 2 standard deviations but do not include any contribution from k(OH+i-C4H8) for which the error limits are estimated to be about ±10%. The results are discussed in relation to the available literature data and considered in terms of the structure-activity relation for hydroxyl radical reactions with organic molecules.  相似文献   

19.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO x ) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO x is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO x emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations.  相似文献   

20.
郭凤霞  陈聪 《大气科学》2012,36(4):713-721
为了解闪电对对流层上部NOx的贡献,本文利用美国全球水资源和气候中心(GHRC)提供的1995年4月~2005年12月的闪电卫星格点资料及高层大气研究卫星 (UARS) 上的卤素掩星试验装置 (HALOE) 1991年10 月~2005 年11月的观测资料,分析了中国地区闪电与对流层上部NOx体积混合比的时空分布特征及两者的相关性.结果表明:中国地区闪电和对流层上部的NOx在季节分布、年际分布和空间分布上保持很好的一致性,闪电是对流层上部NOx的重要来源;NO极值高度在350 hPa左右,云闪直接产生的NO是极值产生的主要原因,NO2的极值高度在250 hPa左右,因为闪电产生的NO在传输过程中会被氧化成NO2并通过雷暴的垂直输送作用抬升到更高高度;强对流活动有利于NOx的传输,而人类活动产生的NOx一般较难输送到对流层上部,因此闪电多发区的NOx极值较大,所在的高度也较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号