首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Raman spectra of γ-Mg2SiO4 taken to 200 kbar were used to calculate entropy and heat capacity at various P-T conditions. These new thermodynamic data on γ-MgSiO4, similar data on MgSiO3 perovskite (pv), previous data on β-MgSiO4 and MgO (mw), and previous volumetric data of all phases were used to calculate the phase boundaries in the Mg2SiO4 phase diagram. Our resulting slope for the β→γ transition (50±4 bar K-1) is in excellent agreement with recent multi-anvil studies. The slopes for the β→pv+MgO and γ→pv+MgO are-7±3 and -25±4 bar K-1, respectively, and are consistent with our CO2 laser heated diamond anvil studies. These slopes result in a β-γ-MgO+pv triple point at approximately 229 kbar and 2260 K for the iron free system.  相似文献   

2.
High-temperature and high-pressure experiments conducted in a diamond-anvil cell revealed phase transformations in the aragonite-type carbonates of strontianite (SrCO3), cerussite (PbCO3), and witherite (BaCO3) at pressures below 4 GPa and ~1000?°C. The powder X-ray diffraction patterns of these high-pressure phases can be reasonably indexed with the same type of orthorhombic cell having a space group of P2122 (17). By assuming 16 MCO3 (M=Sr, Ba or Pb) molecules in a unit cell, the transition from the aragonite form to a new phase was concomitant with a volume contraction of 4.23, 2.38, and 2.34% for SrCO3, PbCO3, and BaCO3, respectively. If the same phase transition were to occur in CaCO3, it has been estimated that the transition would accompany a 7% volume contraction.  相似文献   

3.
One atmosphere liquidus relationships in the system Mg2SiO4 (Fo)–Ca2SiO4 (La)–NaAlSiO4 (Ne)–CaAl2O4 (CA)–SiO2 (Sil) are presented as analogs for alkaline mafic lavas. Liquidus diagrams are constructed from electron microprobe analyses of quenched liquids and coexisting mineral phases produced in melting experiments and they are depicted in terms of sub-projections within the pseudo-quaternary system Fo–La–[Ne,CA]–Sil. The Ne and CA components are combined to create a normative feldspathoid component defined as Ne#=Ne/[Ne+CA]. Liquidus relations at Ne#=0.5 from this study are compared to relations at Ne#=0.0 and 1.0 from previous studies. In general, liquidus temperatures decrease and positions of liquidus boundaries involving feldspathic phases shift toward the [Ne, CA] component as Ne# increases. The pseudoinvariant points fo+di+pl+mel+l and fo+pl+mel+sp+l exist at Ne#=0.5. These equilibria between forsterite-plagioclase-melilite-liquid are not present in the system when Ne#=1.0 because a boundary curve (fo+di+ne+l) separates the plagioclase and melilite liquidus fields. The liquidus diagrams provide useful analogs for the crystallization sequences of natural primary alkali olivine basalts, basanitoids, basanites, olivine nephelinites, olivine-melilite nephelinites and olivine melilitites.  相似文献   

4.
Ab-initio interionic potentials for Mg2+, Si4+, and O2– have been used in molecular dynamics (MD) simulations to investigate diffusivity changes, pressure-induced structural transitions, and temperature effects on polymerization in MgSiO3 and Mg2SiO4 melts and glasses. The potential gives reasonable agreement with the 0.1 MPa radial distribution function of MgSiO3 glass. Maxima in the diffusion coefficients of Si4+ and O2– occur as pressure is increased on the MgSiO3 melt. The controlling structural mechanism for this behavior is the Q1 species of SiO4 tetrahedra. Mg2+ diffusion coefficients decrease monotonically with pressure in both melt compositions. Increasing Mg2+ coordination number and population of 3- and 4-membered SiO4 rings with pressure combine to hinder translation of the Mg2+ ions. The dominant changes in structure with pressure are a decrease in the intertetrahedral (Si-O--Si) angle up to approximately 4 g/cm3 and coordination changes of the ions above this density. Temperature effects on viscosity in these simulated melts are indirectly studied by analyzing polymerization changes with temperature. Polymerization and coordination numbers increase with decreasing temperature and a small quench rate effect is observed. Fair agreement is found between the MD simulations and experimental equation of state for Mg2SiO4, but the equation of state predictions for MgSiO3 melts are much less accurate. The zero pressure volume, V 0, is significantly higher and K 0 is lower in the simulations than empirical values. The inadequacies reflect error in using the ionic approximation for polymerized systems and a need to collect more data for a variety of molecular configurations in the development of ab-initio potentials.  相似文献   

5.
Solution enthalpies of synthetic olivine solid solutions in the system Mg2SiO4-Fe2SiO4 have been measured in molten 2PbO·B2O3 at 979 K. The enthalpy data show that olivine solid solutions have a positive enthalpy of mixing and the deviation from ideality is approximated as symmetric with respect to composition, in contrast to the previous study. Applying the symmetric regular solution model to the present enthalpy data, the interaction parameter of ethalpy (WH) is estimated to be 5.3±1.7 kJ/mol (one cation site basis). Using this Wh and the published data on excess free energy of mixing, the nonideal parameter of entropy (Ws) of olivine solid solutions is estimated as 0.6±1.5 J/mol·K.  相似文献   

6.
The first pressure derivatives of the second-order elastic constants have been calculated for brucite, Mg(OH)2 from the second- and third-order elastic constants. The deformation theory and finite strain elasticity theory have been used to obtain the second- and third-order elastic constants of Mg(OH)2 from the strain energy of the lattice. The strain energy ϕ is calculated by taking into account the interactions up to third nearest neighbors in the Mg(OH)2 lattice. ϕ is then compared with the strain dependent lattice energy from continuum model approximation to obtain the expressions of elastic constants. The complete set of six second-order elastic constants C IJ of brucite exhibits large anisotropy. Since C 33 (= 21.6 GPa), which corresponds to the strength of the material along the c-axis direction, is less than the longitudinal mode C 11 (= 156.7 GPa), the interlayer binding forces are weaker than the binding forces along the basal plane of Mg(OH)2. The 14 nonvanishing components of the third-order elastic constants, C IJK , of brucite have been obtained. All the C IJK of brucite are negative except the values of C 114 (= 230.36 GPa), C 124 (= 75.45 GPa) and C 134 (= 36.98 GPa). The absolute values of the C IJK are, in general, one order of magnitude greater than the C IJ ’s in the Mg(OH)2 system as usually expected for a crystalline material. To our knowledge, no previous data are available to compare the pressure derivatives of brucite. The pressure derivatives of the two components viz., C 14 and C 33 become negative indicating an elastic instability in brucite while under pressure. This may be related to the phase transition of brucite largely involving rearrangements of H atoms revealed in the Raman spectroscopic, powder neutron diffraction and synchrotron X-ray diffraction studies.  相似文献   

7.
Some unusual density relations between olivine and coexisting liquid in the system fosterite-fayalite are reported. At 1 atmosphere pressure olivine floats on its coexisting liquid for intermediate compositions on this binary because of extreme partitioning of Fe into the melt phase. At 20 kilobars the usual behavior of olivine settling occurs because the partitioning of Fe in the melt is reduced, aided possibly by the dissolution of CO2 in the melt from use of a graphite container. Olivine flotation and settling are rapid in a time period of only a few hours because viscosities are a little greater than that of paraffin oil at room temperature. Some adcumulate textures with good triple junction grain boundaries are developed. General observations of differentiated magmatic systems on a number of scales and experimental data indicate that the mechanisms by which magmas can differentiate vary considerably in the ultramafic to tholeiitic compositional range.  相似文献   

8.
The olivine-beta phase transformation in Co2SiO4 has been studied in a large-volume high-pressure apparatus (USSA-2000). The experimental conditions straddle the univariant phase boundaries due to the presence of a substantial temperature gradient (150–200° C over the 3-mm length of the sample). At conditions close to equilibrium, the transformation mechanism is one of limited nucleation with rapid growth of large crystals of the beta phase. Transmission electron microscopy (TEM) analysis shows that the cation stacking faults in Co2SiO4-spinel are identical to those seen in numerous spinels. The 010 faults in beta-Co2SiO4 are found to be identical to those seen in beta-(Mg,Fe)2SiO4 found in shocked veins in meteorites.  相似文献   

9.
Classical atomistic simulation techniques have been used to investigate the energies of hydrogen defects in Mg2SiO4 and Mg2GeO4 spinels. Ringwoodite (γ-Mg2SiO4) is considered to be the most abundant mineral in the lower part of the transition zone and can incorporate large amounts of water in the form of hydroxyls, whereas the germanate spinel (γ-Mg2GeO4) corresponds to a low-pressure structural analogue for ringwoodite. The calculated defect energies indicate that the most favourable mechanisms for hydrogen incorporation are coupled either with the reduction of ferric iron or with the creation of tetrahedral vacancies. Hydrogen will go preferentially into tetrahedral vacancies, eventually leading to the formation of the hydrogarnet defect, before associating with other negatively charged point defects. The presence of isolated hydroxyls is not expected. The same trend is observed for germanate, and thus γ-Mg2GeO4 could be used as a low-pressure analogue for ringwoodite in studies of water-related defects and their effect on physical properties.  相似文献   

10.
 The crystal structure of MgFe2O4 was investigated by in situ X-ray diffraction at high pressure, using YAG laser annealing in a diamond anvil cell. Magnesioferrite undergoes a phase transformation at about 25 GPa, which leads to a CaMn2O4-type polymorph about 8% denser, as determined using Rietveld analysis. The consequences of the occurrence of this dense MgFe2O4 form on the high-pressure phase transformations in the (MgSi)0.75(FeIII)0.5O3 system were investigated. After laser annealing at about 20 GPa, we observe decomposition to two phases: stishovite and a spinel-derived structure with orthorhombic symmetry and probably intermediate composition between MgFe2O4 and Mg2SiO4. At pressures above 35 GPa, we observe recombination of these products to a single phase with Pbnm perovskite structure. We thus conclude for the formation of Mg3Fe2Si3O12 perovskite. Received: 27 March 2000 / Accepted: 1 October 2000  相似文献   

11.
Single crystals of the garnet Mn2+ 3Mn3+ 2[SiO4]3 and coesite were synthesised from MnO2-SiO2 oxide mixtures at 1000°C and 9 GPa in a multianvil press. The crystal structure of the garnet [space group Iad, a=11.801(2) Å] was refined at room temperature and 100 K from single-crystal X-ray data to R1=2.36% and R1=2.71%, respectively. In contrast to tetragonal Ca3Mn3+ 2[GeO4]3 (space group I41/a), the high-pressure garnet is cubic and does not display an ordered Jahn-Teller distortion of octahedral Mn3+. A disordered Jahn-Teller distortion either dynamic or static is evidenced by unusual high anisotropic displacement parameters. The room temperature structure is characterised by following bond lengths: Si-O=1.636(4) Å (tetrahedron), Mn3+-O=1.995 (4) Å (octahedron), Mn2+-O=2.280(5) and 2.409(4) Å (dodecahedron). The cubic structure was preserved upon cooling to 100 K [a=11.788(2) Å] and upon compressing up to 11.8 GPa in a diamond-anvil cell. Pressure variation of the unit cell parameter expressed by a third-order Birch-Murnaghan equation of state led to a bulk modulus K 0=151.6(8) GPa and its pressure derivatives K′=6.38(19). The peak positions of the Raman spectrum recorded for Mn2+ 3Mn3+ 2[SiO4]3 were assigned based on a calderite Mn2+ 3Fe3+ 2[SiO4]3 model extrapolated from andradite and grossular literature data.  相似文献   

12.
13.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   

14.
The first silicate possessing a K2NiF4-type structure (Ca2SiO4) has been synthesized at loading pressures between 220 and 260 kbar and a temperature of about 1000° C in a diamond-anvil press coupled with a YAG laser heater. The lattice parameters for Ca2SiO4 (K2NiF4-type) area=3.564±0.002 andc=11.66±0.01 Å at room temperature and 1 bar pressure, and the molar volume is 44.57±0.05 cm3. The lattice parameter for the non-quenchable high-pressure perovskite modification of CaSiO3 is estimated to be 3.56±0.03 Å at STP conditions. To date, A2BX4 compounds possessing the K2NiF4-type structure arein all cases less dense than their corresponding mixtures of ABX3 and AX compounds possessing, respectively, the perovskite (or related structures) and rocksalt structures. Hence the K2NiF4 structure is unstable relative to the mixture perovskite plus rocksalt at high pressures. For example, in a preliminary experimental study Ca2GeO4 in the K2NiF4-type structure has been found to transform to an as-yet-undetermined phase or assemblage at pressures between 200 and 250 kbar and at about 1000° C. It is concluded that a similar phase transformation might also occur in Ca2SiO4 (K2NiF4 type) but that the K2NiF4-type structure would not be adopted by Mg2SiO4 in the earth's mantle.  相似文献   

15.
The solubility mechanism of fluorine in quenched SiO2-NaF and SiO2-AlF3 melts has been determined with Raman spectroscopy. In the fluorine abundance range of F/(F+Si) from 0.15 to 0.5, a portion of the fluorine is exchanged with bridging oxygen in the silicate network to form Si-F bonds. In individual SiO4-tetrahedra, one oxygen per silicon is replaced in this manner to form fluorine-bearing silicate complexes in the melt. The proportion of these complexes is nearly linearly correlated with bulk melt F/(F+Si) in the system SiO2-AlF3, but its abundance increases at a lower rate and nonlinearly with increasing F/(F+Si) in the system SiO2-NaF. The process results in the formation ofnonbridging oxygen (NBO), resulting in stabilization of Si2O 5 2? units as well as metal (Na+ or Al3+) fluoride complexes in the melts. Sodium fluoride complexes are significantly more stable than those of aluminum fluoride.  相似文献   

16.
New polarized infrared reflectance spectra of pure synthetic forsterite and natural Fo86-olivine have been recorded from 5000 to 100cm-1. Out of the 35 expected infrared active modes, 33 have been observed (8 B1u, 12 B2u, 13 B3u). The observed frequency shift from pure forsterite to Fo86-olivine is consistent with the higher mass of the substituted iron. The substitution of only 14% of iron also reduces the overal far-infrared reflectivity of olivine as compared to pure forsterite. Several discrepancies associated with previous studies of forsterite are explained by our investigation. We suggest that some of the previous investigations were complicated by polarization mixing.  相似文献   

17.
The isobaric (P=10 kb) temperature dependence of the electrical conductivities of forsterite, fayalite and forsterite-fayalite mixed crystals was measured with special regard to the thermodynamics of point defects in these minerals. Measurements, taken at increasing and decreasing temperature, were performed on synthetic powders of the following compositions: Fo 100/Fa 0, Fo 90/Fa 10, Fo 80/Fa 20, Fo 60/Fa 40, and Fo 0/Fa100. Control of oxygen partial pressure was achieved with solid state buffers (Fa/Q/M, Fa/Q/I, and Fe/FeO). Activities of the binary components were controlled by equilibrating the sample with its neighbouring phases. All values for σ, obtained with controlled pO2 and fixed activities of the binary components, agree well upon either heating or cooling. From the gradient of lg σ vs. 1/T plots, the following activation energies were estimated: 2,461 eV (970°–1075°C) and 0.984 eV (522°–970°C) for Fo 100/Fa 0 equilibrated with MgO; 0.777 eV and 0.683 eV for Fo 90/Fa 10 and Fo 80/Fa 20 equilibrated with enstatite and pO2 controlled by Fe/FeO buffer; 0.622 eV, 0.528 eV, and 0.479 eV for Fo 90/Fa 10, Fo 80/Fa 20, and Fo 60/Fa 40 equilibrated with enstatite and pO2 controlled by Fa/Q/M buffer; and 0.524 eV and 0.383 eV for Fo 0/Fa 100 equilibrated with Q/I and Q/M respectively.  相似文献   

18.
We use an approach based upon the Born model of solids, in which potential functions represent the interactions between atoms in a structure, to calculate the phonon dispersion of forsterite and the lattice dynamical behaviour of the beta-phase and spinel polymorphs of Mg2SiO4. The potential used (THB1) was derived largely empirically using data from simple binary oxides, and has previously been successfully used to model the infrared and Raman behaviour of forsterite. It includes ‘bond bending’ terms, that model the directionality of the Si-O bond, in addition to the pair-wise additive Coulombic and short range terms. The phonon dispersion relationships of the Mg2SiO4 polymorphs predicted by THB1 were used to calculate the heat capacities, entropies, thermal expansion coefficients and Gruneisen parameters of these phases. The predicted heat capacities and entropies are in outstandingly good agreement with those determined experimentally. The predicted thermodynamic data of these phases were used to construct a phase diagram for this system, which has Clausius-Clapeyron slopes in very close agreement with those found by experiment, but which has predicted transformation pressures that show less close agreement with those inferred from experiment. The overall success, however, that we have in predicting the lattice dynamical and thermodynamic properties of the Mg2SiO4 polymorphs shows that our potential THB1 represents a significant step towards finding the elusive quantitative link between the microscopic or atomistic behaviour of minerals and their macroscopic properties.  相似文献   

19.
Infrared absorption spectra of the high-pressure polymorphs β-Mg2SiO4 and β-Co2SiO4 have been measured between 0 and 27 GPa at room temperature. Grüneisen parameters determined for 11 modes of β-Mg2SiO4 (frequencies of 300 to 1,050 cm?1) and 5 modes of β-Co2SiO4 (490 to 1,050 cm?1) range between 0.8 and 1.9. Averaging the mid-infrared spectroscopic data for β-Mg2SiO4 yields an average Grüneisen parameter of 1.3 (±0.1), in good agreement with the high-temperature thermodynamic value of 1.35. Similarly, we find a value of 1.05 (±0.2) for the average spectroscopic Grüneisen parameter of β-Co2SiO4.  相似文献   

20.
The magnetic behaviour and Curie temperatures (T C ) of spinelloids and spinels in the Fe3O4–Fe2SiO4 and Fe3O4–(Mg,Fe)2SiO4 systems have been determined from magnetic susceptibility (k) measurements in the temperature range –192 to 700 °C. Spinelloid II is ferrimagnetic at room temperature and the k measurements display a characteristic asymmetric hump before reaching a T C at 190 °C. Spinelloid V from the Mg-free system is paramagnetic at room temperature and hysteresis loops at various low temperatures indicate a ferri- to superparamagnetic transition before reaching the T C . The T C shows a non-linear variation with composition between –50 and –183 °C with decreasing magnetite component (X Fe3O4). The substitution of Mg in spinelloid V further decreases T C . Spinelloid III is paramagnetic over nearly the total temperature range. Ferrimagnetic models for spinelloid II and spinelloid V are proposed. The T C of Fe3O4–Fe2SiO4 spinel solid solutions gradually decrease with increasing Si content. Spinel is ferrimagnetic at least to a composition of X Fe3O4=0.20, constraining a ferrimagnetic to antiferromagnetic transition to occur at a composition of X Fe3O4<0.20. A contribution of the studied ferrimagnetic phases for crustal anomalies on the Earth can be excluded because they lose their magnetization at relatively low temperatures. However, their relevance for magnetic anomalies on other planets (Mars?), where these high-pressure Fe-rich minerals could survive their exhumation or were formed by impacts, has to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号