首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments (~6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt–wall rock model closely approached equilibrium and experienced <5% Fe loss or gain. Experiments that experienced higher extents of Fe loss were used to critically evaluate the practice of “correcting” for Fe loss by adding iron. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. An important element ratio in mantle lherzolite composition, the Ca/Al ratio, can be significantly elevated through shallow mantle melt–wall rock reaction. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt–wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.  相似文献   

2.
Spinel-hosted hydrous silicate mineral inclusions are often observed in dunite and troctolite as well as chromitite. Their origin has been expected as products associated with melt–peridotite reaction, based on the host rock origin. However, the systematics in mineralogical and geochemical features are not yet investigated totally. In this study, we report geochemical variations of the spinel-hosted pargasite inclusions in reacted harzburgite and olivine-rich troctolite collected from Atlantis Massif, an oceanic core complex, in the Mid-Atlantic Ridge. The studied samples are a good example to examine geochemical variations in the inclusions because the origin and geological background of the host rocks have been well constrained, such as the reaction between MORB melt and depleted residual harzburgite beneath the mid-ocean ridge spreading center. The trace-element compositions of the pargasite inclusions are characterized by not only high abundance of incompatible elements but also the LREE and HFSE enrichments. Distinctive trace-element partitioning between the pargasite inclusion and the host-rock clinopyroxene supports that the secondary melt instantaneously formed by the reaction is trapped in spinel and produces inclusion minerals. While the pargasite geochemical features can be interpreted by modal change reaction of residual harzburgite, such as combination of orthopyroxene decomposition and olivine precipitation, degree of the LREE enrichment as well as variation of HREE abundance is controlled by melt/rock ratio in the reaction. The spinel-hosted hydrous inclusion could be embedded evidence indicating melt–peridotite reaction even if reaction signatures in the host rock were hidden by other consequent reactions.  相似文献   

3.
To better understand the origin, migration, and evolution of melts in the lithospheric mantle and their roles on the destruction of the North China Craton (NCC), we conducted a petrological and geochemical study on a quartz-bearing orthopyroxene-rich websterite xenolith from Hannuoba, the NCC, and its hosted melt and fluid inclusions. Both clinopyroxene and orthopyroxene in the xenolith contain lots of primary and secondary inclusions. High-temperature microthermometry of melt inclusions combined with Raman spectroscopy analyses of coexisting fluid inclusions shows that the entrapment temperature of the densest inclusions was ~1215°C and the pressure ~11.47 kbar, corresponding to a depth of ~38 km, i.e. within the stability of the spinel lherzolite. Intermediate pressure inclusions probably reflect progressive fluid entrapment over a range of depths during ascent, whereas the low-pressure inclusions (P < 2 kbar) may represent decrepitated primary inclusions. In situ laser-ablation ICP-MS analyses of major and trace elements on individual melt inclusions show that the compositions of these silicate melt inclusions in clinopyroxene and orthopyroxene are rich in SiO2, Al2O3, and alkalis but poor in TiO2 and strongly enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), with negative anomalies of high-field strength elements (HFSEs). These characteristics suggest that the silica-rich melts could be derived from the partial melting of subducted oceanic slab. Therefore, this kind of quartz-bearing orthopyroxene-rich websterite may be produced by interaction between the slab-derived melts with the mantle peridotite. This study provides direct evidence for the origin, migration, and evolution of melts in the lithospheric mantle, which may play an important role in the destruction of the NCC.  相似文献   

4.
The study of re-homogenized melt inclusions in the same growth planes of quartz of pegmatites genetically linked to the Variscan granite of the Ehrenfriedersdorf complex, Erzgebirge, Germany, by ion microprobe analyses has determined high concentrations of Be, up to 10,000 ppm, in one type of melt inclusion, as well as moderate concentrations in the 100 ppm range in a second type of melt inclusion. Generally, the high Be concentrations are associated with the H2O- and other volatile-rich type-B melt inclusions, and the lower Be concentration levels are connected to H2O-poor type-A melt inclusions. Both inclusion types, representing conjugate melt pairs, are formed by a liquid–liquid immiscibility separation process. This extremely strong and very systematic scattering in Be provides insights into the origin of Be concentration and transport mechanisms in pegmatite-forming melts. In this contribution, we present more than 250 new analytical data and show with ion microprobe and fs-LA-ICPMS studies on quenched glasses, as well as with confocal Raman spectroscopy of daughter minerals in unheated melt inclusions, that the concentrations of Be may achieve such extreme levels during melt–melt immiscibility of H2O-, B-, F-, P-, ± Li-enriched pegmatite-forming magmas. Starting from host granite with about 10 ppm Be, melt inclusions with 10,000 ppm Be correspond to enrichment by a factor of over 1,000. This strong enrichment of Be is the result of processes of fractional crystallization and further enrichment in melt patches of pegmatite bodies due to melt–melt immiscibility at fluid saturation. We also draw additional conclusions regarding the speciation of Be in pegmatite-forming melt systems from investigation of the Be-bearing daughter mineral phases in the most H2O-rich melt inclusions. In the case of evolved volatile and H2O-rich pegmatite systems, B, P, and carbonates are important for the enrichment and formation of stable Be complexes.  相似文献   

5.
6.
7.
Interactions between basaltic melt and orthopyroxenite(Opx)were investigated to gain a better understanding of the consequences of the residence and transport of ocean island basalts(OIBs)within the mantle.The experiments were conducted using a DS-3600 six-anvil apparatus at 3.0–4.5 GPa and 1300–1450℃.The basaltic melt and Opx coexisted at local equilibrium at these pressures and temperatures;the initial melts dissolved Opx,which modified their chemical composition,and clinopyroxene(Cpx)precipitated with or without garnet(Grt).The trace-element contents of Grt,Cpx,and melt were measured and the mineral–melt distribution coefficients(D)of Cpx–melt and Grt–melt were calculated,which can be used to assess the distribution of trace elements between basalt and minerals in the mantle.Two types of reaction rim were found in the experimental products,Cpx,and Cpx+Grt;this result indicates that residual rocks within the mantle should be pyroxenite or garnet pyroxenite.Both rock types are found in mantle xenoliths from Hawaii,and the rare-earth-element(REE)pattern of Cpx in these mantle pyroxenites matches those of Cpx in the experimental reaction rims.Furthermore,residual melts in the experimental products plot in similar positions to Hawaiian high-SiO2OIBs on major-element Harker diagrams,and their trace-element patterns show the signature of residual Grt,particularly in runs at1350℃ and 4.0–4.5 GPa.Trace-element concentrations of the experimental residual melts plot in similar positions to the Hawaiian OIBs on commonly used discrimination diagrams(Ti vs.Zr,Cr vs.Y,Cr vs.V,Zr/Y vs.Zr,and Ti/Y vs.Nb/Y).These results indicate that reaction between basaltic melt and pyroxenite might contribute to the generation of Hawaiian high-SiO2 OIBs and account for their chemical variability.  相似文献   

8.
9.
This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco–Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria–Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt–rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco–Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4–0.3 vs. 0.2) and ZrN/YN (0.9–0.6 vs. 0.4–0.3) than that from the Bracco–Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial εNd from +?8.8 to +?8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint (εNd at the time of basalt formation?=???5.5 and ??5.2, respectively). We propose that the Bracco–Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.  相似文献   

10.
A spatial and temporal association between adakitic rocks and Nb-enriched basalts (NEB) is recognised for the first time in the western sector of the Trans-Mexican Volcanic Belt in the San Pedro–Cerro Grande Volcanic Complex (SCVC). The SCVC is composed of subalkalic intermediate to felsic rocks, spanning in composition from high-silica andesites to rhyolites, and by the young transitional hawaiite and mugearite lavas of Amado Nervo shield volcano. Intermediate to felsic rocks of the SCVC show many geochemical characteristics of typical adakites, such as high Sr/Y ratios (up to 180) and low Y (<18 ppm) and Yb contents. Mafic Amado Nervo rocks have high TiO2 (1.5–2.3 wt%), Nb (14–27 ppm), Nb/La (0.5–0.9) and high absolute abundances of HFSE similar to those shown by NEB. However, the Sr and Nd isotopic signature of SCVC rocks is different from that shown by typical adakites and NEB. Although the adakites–NEB association has been traditionally considered as a strong evidence of slab-melting, we suggest that other processes can lead to its generation. Here, we show that parental magmas of adakitic rocks of the SCVC derive their adakitic characteristic from high-pressure crystal fractionation processes of garnet, amphibole and pyroxene of a normal arc basalt. On the other hand, Amado Nervo Na-alkaline parental magmas have been generated by sediment melting plus MORB-fluid flux melting of a heterogeneous mantle wedge, consisting of a mixture of depleted and an enriched mantle sources (90DM + 10EM). We cannot exclude a contribution to the subduction component of slab melts, because the component signature is dominated by sediment melt, but we argue that caution is needed in interpreting the adakites–NEB association in a genetic sense.  相似文献   

11.
It is demonstrated that most subsolidus coronitic textures in ferrogabbroids of the Elet’ozero intrusive complex result from crystallization of drops of immiscible interstitial high-Fe melt scattered among cumulates and containing SiO2, Ti, Al, Ca, Na, K, Ba, and volatiles (water, F, and Cl) as well. Fe–Ti oxides were the first crystal phases, whereas other components were incorporated in the surrounding concentrically zoned rims composed of olivine, phlogopite, and kaersutite–pargasite. Reactional rims at the boundaries between olivine and plagioclase and symplectitic pargasite–muscovite–scapolite rims around the clusters of olivine and Fe–Ti oxides are observed as well. Thus, the coronitic textures in ferrogabbroids of the Elet’ozero Complex provide the first evidence for the existence of an immiscible, relatively low-temperature high-Fe melt in the natural magmatic systems.  相似文献   

12.
A suite of mainly spinel peridotite and subordinate pyroxenite xenoliths and megacrysts were studied in detail, enabling us to characterize upper mantle conditions and processes beneath the modern North American–Eurasian continental plate boundary. The samples were collected from 37-Ma-old basanites cropping out in the Main Collision Belt of the Chersky Range, Yakutia Republic (Russian Far East). The spinel lherzolites reflect a mantle sequence, equilibrated at temperatures of 890–1,025 °C at pressures of 1.1–2 GPa, with melt extraction estimated to be around 2–6 %. The spinel harzburgites are characterized by lower P–T equilibration conditions and estimated melt extraction up to 12 %. Minor cryptic metasomatic processes are recorded in the clinopyroxene trace elements, revealing that percolating hydrous fluid-rich melts and basaltic melts affected the peridotites. One of the lherzolites preserves a unique melt droplet with primary dolomite in perfect phase contact with Na-rich aluminosilicate glass and sodalite. On the basis of the well-constrained P–T frame of the xenolith suite, as well as the rigorously documented melt extraction and metasomatic history of this upper mantle section, we discuss how a carbonated silicate melt infiltrated the lherzolite at depth and differentiated into an immiscible carbonate and silicate liquid shortly before the xenolith was transported to the surface by the host basalt. Decreasing temperatures triggered crystallization of primary dolomite from the carbonate melt fraction and sodalite as well as quenched glass from the Na-rich aluminosilicate melt fraction. Rapid entrainment and transport to the Earth’s surface prevented decarbonatization processes as well as reaction phenomena with the host lherzolite, preserving this exceptional snapshot of upper mantle carbonatization and liquid immiscibility.  相似文献   

13.
The middle Jurassic Coast Range Ophiolite (CRO) is one of the most important tectonic elements in western California, cropping out as tectonically dismembered elements that extend 700 km from south to north. The volcanic and plutonic sections are commonly interpreted to represent a supra-subduction zone (SSZ) ophiolite, but models specifying a mid-ocean ridge origin have also been proposed. These contrasting interpretations have distinctly different implications for the tectonic evolution of the western Cordillera in the Jurassic. If an SSZ origin is confirmed, we can use the underlying mantle peridotites to elucidate melt processes in the mantle wedge above the subduction zone. This study uses laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to study pyroxenes in peridotites from four mantle sections in the CRO. Trace element signatures of these pyroxenes record magmatic processes characteristic of both mid-ocean ridge and supra-subduction zone settings. Group A clinopyroxene display enriched REE concentrations [e.g., Gd (0.938–1.663 ppm), Dy (1.79–3.24 ppm), Yb (1.216–2.047 ppm), and Lu (0.168–0.290 ppm)], compared to Group B and C clinopyroxenes [e.g., Gd (0.048–0.055 ppm), Dy (0.114–0.225 ppm), Yb (0.128–0.340 ppm), and Lu (0.022–0.05 ppm)]. These patterns are also evident in orthopyroxene. The differences between these geochemical signatures could be a result of a heterogeneous upper mantle or different degrees of partial melting of the upper mantle. It will be shown that CRO peridotites were generated through fractional melting. The shapes of REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Models call for 3% dry partial melting of MORB-source asthenosphere in the garnet lherzolite field for abyssal peridotites and 15–20% further partial melting in the spinel lherzolite field, possibly by hydrous melting for SSZ peridotites. These geochemical variations and occurrence of both styles of melting regimes within close spatial and temporal association suggest that certain segments of the CRO may represent oceanic lithosphere, attached to a large-offset transform fault and that east-dipping, proto-Franciscan subduction may have been initiated along this transform.  相似文献   

14.
Zircon hosted in granite, which crystallized from local pools of anatectic melt among migmatites, in the Rikolatvi structure, Belomorian Mobile Belt, contains minute inclusions of various minerals, biotite and garnet among others. The compositions of the biotite and garnet in the microinclusions differ from those of the same minerals in the granite containing the zircon. The crystallization temperature of the anatectic melt was estimated by the biotite–garnet geothermometer and the composition of the biotite and garnet inclusions at ~800°C.  相似文献   

15.
16.
Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere–lithosphere history of partial melting and subsequent multi-stage melt–rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting (F = 5–10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling (T = 970–1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt–rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt–rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt–rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt–rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt–rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the lithospheric depths at which interaction occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

18.
Fe–Ti oxides (magnetite, Ti-magnetite, ilmenite, and associated high-Al spinel) in the ferrogabbroids of the Middle Paleoproterozoic Elet’ozero syenite–gabbro intrusion are intercumulus minerals usually surrounded by coronitic rims of two types. The first type usually represents multilayer amphibole–biotite ± olivine coronas along contacts of Fe–Ti oxides with cumulus moderate-Ca plagioclase and more rarely, clinopyroxene. Two-layer rim is developed in contact with high-Ca plagioclase; the inner rim consists of pargasite and spinel, while the outer rim is made up of sadanagaite and spinel. The second type is represented by two-stage coronitic textures developed along boundaries of olivine and Fe–Ti oxide clusters with plagioclase. Initially, the olivine was surrounded by orthopyroxene rim, while Fe–Ti oxides were rimmed by pargasite with thin ingrowths of high-Al spinel (hercynite). At the next stage, the entire cluster was fringed by a common symplectite reaction rim, the composition of which also depended on the composition of plagioclase matrix: the spinel–sadanagaite rim was formed in contact with high-Ca plagioclase, while pargasite–muscovite–scapolite rim was formed in contact with moderate-Ca plagioclase. The formation of the outer rims occurred after hydration of the inner parts of coronas around olivine and oxides within the clusters. It is suggested that the Fe–Ti oxides and surrounding coronitic rims were microsystems formed by crystallization of drops of residual hydrous Fe-rich liquid.  相似文献   

19.
The study of coronitic textures in ferrogabbros and data on rhythmic layering of the Elet’ozero Massif supports the existence of a specific low-temperature Fe-rich liquid in nature. This liquid was formed during solidification of intrusion owing to the local multiple accumulation of Fe and Ti contents in a parental Fe-rich Fe–Ti basaltic melt. According to obtained data, this occurred on micro- and macroscale: 1) in the interglanular (intercumulus) space of the crystallization zone where intercumulus melt becomes rich in Fe and Ti owing to the crystallization of cumulus silicate minerals and is transformed into Fe-rich liquid, which concentrates residual components of an intergranular melt; 2) during formation of rhythmic layering when Fe-rich residual melt is accumulated before the upper part of the moving front of solidification; when Fe content reaches a certain limit, the melt is also transformed in a separate Fe-rich liquid, the interlayers of which form the upper (lowest temperature) members of rhythms. It was concluded that the emergence of a Fe-rich melt is related to its specific structure, which is formed when the Fe content reaches certain critical values in a liquid. Thus, this liquid is not a product of immiscible splitting of a melt, but represents a peculiar phenomenon. The preservation of primary textures and structures of the rocks is supposedly related to the lyophobic properties of surfaces, i.e., “repulsion” of nonwetting liquid by facets of cumulus crystals, especially plagioclase. Owing to this, the drops and even horizons of heavy Fe-rich liquid are retained in situ of their formation.  相似文献   

20.
The partitioning of the rare earth elements between a peraluminous monzogranitic melt and a chloride-bearing, sulfur- and carbon dioxide-free, aqueous volatile phase was examined experimentally as a function of chloride and major element concentrations at 800 °C and 200 MPa. The light rare earth elements (e.g. La, Ce) partition into the aqueous volatile phase to a greater extent than the heavy rare earth elements (e.g. Yb, Lu). Distribution of the rare earth elements and the major elements H, Na, K, Ca, and Al between the melt phase (mp) and aqueous volatile phase (aq) is a function of the chlorine concentration in the system, and our data are consistent with the rare earth and major elements occurring as chloride complexes in the aqueous volatile phase. Apparent equilibrium constants for experiments at 800 °C and 200 MPa, K REE,Na aq/mp , expressed as the ratio of the concentration of a given rare earth element in the aqueous volatile phase to the concentration of the same element in the melt phase, divided by the cubed ratio of sodium in the aqueous volatile phase to the concentration of sodium in the melt phase, decrease systematically with increasing atomic number from K La,Na aq/mp = 0.41(±0.03) to K Lu,Na aq/mp =0.11(±0.01), except for Eu. These experimentally derived apparent equilibrium constants for the rare earth elements can be used in a numerical simulation of magmatic volatile exsolution. The simulation gave results consistent with the elemental distribution in the potassic alteration zone of a deep porphyry copper deposit, but higher concentrations of heavy rare earth elements are released into the magmatic aqueous solution than are captured in the secondary mineralization. Received: 1 November 1999 / Accepted: 7 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号