首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

2.
Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group   总被引:1,自引:0,他引:1  
Abstract— Pecora Escarpment (PCA)91002 is a light/dark-structured chondrite breccia related to Carlisle Lakes and Rumuruti; the meteorite contains ~10–20 vol% equilibrated (type ?5 and ?6) clasts within a clastic groundmass, much of which was metamorphosed to type-3.8 levels. The olivine compositional distribution forms a tight cluster that peaks at Fa38–40; by contrast, low-Ca pyroxene compositions are highly variable. Opaque phases identified in PCA91002 and its paired specimen, PCA91241, include pyrrhotite, pentlandite, pyrite, chromite, ilmenite, metallic Cu and magnetite. The majority of the rock is of shock stage S3-S4; there are numerous sulfide-rich shock veins and 50-μm plagioclase melt pockets. Instrumental neutron activation analysis shows that, unlike Carlisle Lakes and ALH85151, PCA91002 exhibits no Ca enrichment or Au depletion; because PCA91002 is relatively unweathered, it seems probable that the Ca and Au fractionations in Carlisle Lakes and ALH85151 were caused by terrestrial alteration. The Rumuruti-like (formerly Carlisle-Lakes-like) chondrites now include eight separate meteorites. Their geochemical and petrographic similarities suggest that they constitute a distinct chondrite group characterized by unfractionated refractory lithophile abundances (0.95 ± 0.05x CI), high bulk Δ17O, a low chondrule/groundmass modal abundance ratio, mean chondrule diameters in the 400 ± 100 μm range, abundant NiO-bearing ferroan olivine, sodic plagioclase, titanian chromite, abundant pyrrhotite and pentlandite and negligible metallic Fe-Ni. We propose that this group be called R chondrites after Rumuruti, the only fall. The abundant NiO-bearing ferroan olivine grains, the occurrence of Cu-bearing sulfide, and the paucity of metallic Fe-Ni indicate that R chondrites are highly oxidized. It is unlikely that appreciable oxidation took place on the parent body because of the essential lack of plausible oxidizing agents (e.g., magnetite or hydrated silicates). Therefore, oxidation of R chondrite material must have occurred in the nebula. A few type-I porphyritic olivine chondrules containing olivine grains with cores of Fa3–4 composition occur in PCA91002; these chondrules probably formed initially as metallic-Fe-Ni-bearing objects at high nebular temperatures. As temperatures decreased and more metallic Fe was oxidized, these chondrules accreted small amounts of oxidized material and were remelted. The ferroan compositions of the >5-μm olivine grains in the R chondrites reflect equilibration with fine-grained FeO-rich matrix material during parent body metatnorphism.  相似文献   

3.
We report on the petrography and mineralogy of three types of silicate veinlets in the brecciated eucrite Northwest Africa (NWA) 1109. These include Fe‐rich olivine, Mg‐rich olivine, and pyroxene veinlets. The Fe‐rich olivine veinlets mainly infill fractures in pyroxene and also occur along grain boundaries between pyroxene and plagioclase crystals, in both nonequilibrated and equilibrated lithic clasts. The host pyroxene of Fe‐rich olivine veinlets shows large chemical variations between and within grains. The Fe‐rich olivine veinlets also contain fine‐grained Fe3+‐bearing chromite, highly calcic plagioclase, merrillite, apatite, and troilite. Based on texture and mineral chemistry, we argue that the formation of Fe‐rich olivine was related to fluid deposition at relatively high temperatures. However, the source of Fe‐rich olivine in the veinlets remains unclear. Magnesium‐rich olivine veinlets were found in three diogenitic lithic clasts. In one of these, the Mg‐rich olivine veinlets only occur in one of the fine‐grained interstitial regions and extend into fractures within surrounding coarse‐grained orthopyroxene. Based on the texture of the interstitial materials, we suggest that the Mg‐rich olivine veinlets formed by shock‐induced localized melting and recrystallization. Pyroxene veinlets were only observed in one clast where they infill fractures within large plagioclase grains and are associated with fine‐grained pyroxene surrounding coarse‐grained pyroxene. The large chemical variations in pyroxene and the fracture‐filling texture indicate that the pyroxene veinlets might also have formed by shock‐induced localized melting and rapid crystallization. Our study demonstrates that silicate veinlets formed by a range of different surface processes on the surface of Vesta.  相似文献   

4.
During the past decade the number of minerals recognized in meteorites has doubled, from about 40 in 1962 to over 80 in 1972. The great expansion in our knowledge can be largely ascribed to the introduction of the electron-beam microprobe as a research tool, enabling the quantitative analysis of microscopic grains in polished sections. While most of these discoveries are of minerals present in minute amounts, their identification has elucidated many aspects of meteorite formation. Of particular interest are five phosphate minerals, three of them unknown in terrestrial rocks; a chromium nitride and a silicon oxynitride; lonsdaleite and chaoite, new polymorphs of carbon; ringwoodite and majorite, the spinel and garnet analogs of olivine and pyroxene respectively; a number of calcium- and aluminum-rich silicates in the Allende meteorite, a Type III carbonaceous chondrite which fell in 1969; and several alkali-rich silicates found as inclusions in iron meteorites. Knowledge of the compositional range of the common minerals olivine, pyroxene, and plagioclase has also been greatly increased by recent researches  相似文献   

5.
Here, the petrological features of numerous primitive achondrites and highly equilibrated chondrites are evaluated to review and expand upon our knowledge of the chondrite–achondrite transition, and primitive achondrites in general. A thermodynamic model for the initial silicate melting temperature and progressive melting for nearly the entire known range of oxidation states is provided, which can be expressed as Tm = 0.035Fa2?3.51Fa + 1109 (in °C, where Fa is the proportion of fayalite in olivine). This model is then used to frame a discussion of textural and mineralogical evolution of stony meteorites with increasing temperature. We suggest that the metamorphic petrology of these meteorites should be based on diffusive equilibration among the silicate minerals, and as such, the chondrite–achondrite transition should be defined by the initial point of silicate melting, not by metal–troilite melting. Evidence of silicate melting is preserved by a distinctive texture of interconnected interstitial plagioclase ± pyroxene networks among rounded olivine and/or pyroxene (depending on ?O2), which pseudomorph the former silicate melt network. Indirectly, the presence of exsolution lamellae in augite in slowly cooled achondrites also implies that silicate melting occurred because of the high temperatures required, and because silicate melt enhances diffusion. A metamorphic facies series is defined: the Plagioclase Facies is equivalent to petrologic types 5 and 6, the Sub‐calcic Augite Facies is bounded at lower temperatures by the initiation of silicate melting and at higher temperatures by the appearance of pigeonite, which marks the transition to the Pigeonite Facies.  相似文献   

6.
MIL 11207 (R6) and LAP 04840 (R6) contain hornblende and phlogopite; MIL 07440 (R6) contains accessory titan‐phlogopite and no hornblende. All three meteorites have been shocked: MIL 11207 contains extensive sulfide veins, pyroxene that formed from dehydrated hornblende, and an extensive network of plagioclase glass; MIL 07440 contains chromite‐plagioclase assemblages, chromite veinlets and blebs, pincer‐shaped plagioclase patches, but no sulfide veins; LAP 04840 contains olivine grains with chromite‐bleb‐laden cores and opaque‐free rims, rare grains of pyroxene that formed from dehydrated hornblende, and no sulfide veins. These meteorites appear to have been heated to maximum temperatures of approximately 700–900 °C under conditions of moderately high PH2O (perhaps 250–500 bars). All three samples underwent postshock annealing. During this process, olivine crystal lattices healed (giving the rocks the appearance of shock‐stage S1), and diffusion of Fe and S from thin sulfide veins to coarse sulfide grains caused the veins to disappear in MIL 07440 and LAP 04840. This latter process apparently also occurred in most S1–S2 ordinary chondrites of high petrologic type. The pressure–temperature conditions responsible for forming the amphibole and mica in these rocks may have been present at depths of a few tens of kilometers (as suggested in the literature). A giant impact or a series of smaller impacts would then have been required to excavate the hornblende‐ and biotite‐bearing rocks and bring them closer to the surface. It was in that latter location where the samples were shocked, deposited in a hot ejecta blanket of low thermal diffusivity, and annealed.  相似文献   

7.
Scott A. Sandford 《Icarus》1984,60(1):115-126
Infrared transmission spectra from 53 meteorites in the spectral range from 2.5 to 25 μm were measured to permit comparisons with data of astronomical objects that are potential meteorite sources. Data were taken for 14 carbonaceous chondrites, 5 LL ordinary chondrites, 6 L ordinary chondrites, 10 H ordinary chondrites, 1 enstatite chondrite, 4 aubrites, 3 eucrites, 4 howardites, 1 diogenite, 1 mesosiderite, 2 nakhlites, 1 shergottite, and the anomalous achondrite Angra dos Reis. The CO and CV carbonaceous chondrites have spectra similar to each other, with 10-μm features characteristic of olivine. The CM carbonaceous chondrites have distinctive 10-μm features that are attributed to layer lattice silicates. Members of both the CI and CR classes have spectra distinct from those of other carbonaceous chondrites. The LL, L, and H ordinary chondrites have spectra that match those of olivine and pyroxene mixtures. The enstatite chondrites and enstatite achondrites (aubrites) all exhibit spectra diagnostic of the pyroxene enstatite. The angrite, howardites, aucrites, nakhlites, shergottite, and diogenite all have similar spectra also dominated by pyroxene. The single mesosiderite examined had a spectrum distinct from all the other meteorites.  相似文献   

8.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

9.
Abstract— Metallic Cu of moderately high purity (~985 mg/g Cu, ~15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically ≤20 μm) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 × 10?4 vol%, corresponding to only 4–5% of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/mm2 have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilite; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.  相似文献   

10.
Miller Range (MIL) 090340 and MIL 090206 are olivine‐rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine‐rich achondrites. We conclude that they are brachinite‐like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3 ± 0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe‐oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3 ± 0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11 × 3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1 ± 0.6), augite, chromite, metal, and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine‐spinel, olivine‐augite, and two‐pyroxene thermometry range from ~800 to 930 °C. In both samples, symplectic intergrowths of Ca‐poor orthopyroxene + opaque phases (Fe‐oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08 ± 0.30‰, δ17O = 2.44 ± 0.21‰, and Δ17O = ?0.20 ± 0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57 ± 0.06 and 2.59 ± 0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite‐like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic “reduction rims” in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S‐rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite‐like achondrites. The poikilitic pyroxene area of MIL 090206 is more typical of brachinite‐like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low‐degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.  相似文献   

11.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

12.
Abstract— Mineralogy, major element compositions of minerals, and elemental and oxygen isotopic compositions of the whole rock attest to a lunar origin of the meteorite Northwest Africa (NWA) 032, an unbrecciated basalt found in October 1999. The rock consists predominantly of olivine, pyroxene and chromite phenocrysts, set in a crystalline groundmass of feldspar, pyroxene, ilmenite, troilite and trace metal. Whole‐rock shock veins comprise a minor, but ubiquitous portion of the rock. Undulatory to mosaic extinction in olivine and pyroxene phenocrysts and micro‐faults in groundmass and phenocrysts also are attributed to shock. Several geochemical signatures taken together indicate unambiguously that NWA 032 originated from the Moon. The most diagnostic criteria include whole‐rock oxygen isotopic composition and ratios of Fe/Mn in the whole rock, olivine, and pyroxene. A lunar origin is documented further by the presence of Fe‐metal, troilite, and ilmenite; zoning to extremely Fe‐rich compositions in pyroxene; the ferrous oxidation state of all Fe in pyroxene; and the rare earth element (REE) pattern with a well‐defined negative europium anomaly. This rock is similar in major element chemistry to basalts from Apollo 12 and 15, but is enriched in light REE and has an unusually high Th/Sm ratio. Some Apollo 14 basalts yield a closer match to NWA 032 in REE patterns, but have higher concentrations of Al2O3. Ar‐Ar step release results are complex, but yield a whole‐rock age of ?2.8 Ga, suggesting that NWA 032 was extruded at 2.8 Ga or earlier. This rock may be the youngest sample of mare basalt collected to date. Noble gas concentrations combined with previously collected radionuclide data indicate that the meteorite exposure history is distinct from currently recognized lunar meteorites. In short, the geochemical and petrographic features of NWA 032 are not matched by Apollo or Luna samples, nor by previously identified lunar meteorites, indicating that it originates from a previously unsampled mare deposit. Detailed assessment of petrographic features, olivine zoning, and thermodynamic modelling indicate a relatively simple cooling and crystallization history for NWA 032. Chromite‐spinel, olivine, and pyroxene crystallized as phenocrysts while the magma cooled no faster than 2 °C/h based on the polyhedral morphology of olivine. Comparison of olivine size with crystal growth rates and preserved Fe‐Mg diffusion profiles in olivine phenocrysts suggest that olivine was immersed in the melt for no more than 40 days. Plumose textures in groundmass pyroxene, feldspar, and ilmenite, and Fe‐rich rims on the phenocrysts formed during rapid crystallization (cooling rates ?20 to 60 °C/h) after eruption.  相似文献   

13.
High‐precision oxygen three‐isotope ratios were measured for four mineral phases (olivine, low‐Ca and high‐Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOCs) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1–S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 μm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low‐Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In type 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass‐dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low‐Ca and high‐Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700–1000 °C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.  相似文献   

14.
Al Huwaysah 010 is an ungrouped achondrite meteorite, recently referred to as a brachinite-like meteorite. This meteorite, showing a fine-grained assemblage of low-Ca pyroxene and opaque phases, is strongly reduced in comparison to other reduced brachinites. The occurrence of some tiny plates of graphite and oldhamite in this meteorite suggests that a partial melt residue has experienced a further reduction process. Olivine, the most abundant phase, is compositionally homogeneous (Fo83.3) as well as the clinopyroxene (En45.5Fs10.8Wo43.7) and the plagioclase (Ab69.5). Orthopyroxene (En85.4Fs13.9Wo0.7) also occurs but only in a fine intergrowth. Other accessory phases are Fe metal grains (Ni-free or Cr-bearing Fe-Ni alloy), troilite, chlorapatite, pentlandite (as inclusions in chromite). The sample shows two different closure temperatures: the highest (≈900°C) is determined via the olivine–chromite intercrystalline geothermometer and the lowest temperature (≈520°C) is determined via the pyroxene-based intracrystalline geothermometer. These temperatures may represent, respectively, the closure temperature associated with the formation and a subsequent impact event excavating the sample from the parental body. The visible to near-infrared (VNIR) reflectance spectra of Al Huwaysah 010 exhibit low reflectance, consistent with the presence of darkening components, and weak absorptions indicative of olivine and pyroxene. Comparing the spectral parameters of Al Huwaysah 010 to potential parent bodies characterized by olivine–pyroxene mineralogy, we find that it falls within the field previously attributed to the SIII type asteroids. These results lead us to classify the Al Huwaysah 010 meteorite as the most reduced brachinite, whose VNIR spectral features show strong affinities with those of SIII asteroids.  相似文献   

15.
Type 3 chondrites are subdivided into 3.0–3.9. Subtype 3.0 chondrites nearly preserve all of their primitive features. Many criteria have been proposed to distinguish such primitive chondrites. Here, we compiled mineral data and reconsider the petrologic classification criteria for subtype 3.0. Chondrites are classified into subtypes by the minor element distribution of olivine and textural and chemical features of Fe-Ni metal. The []Si4O8 and MgO components of feldspar also distinguish subtype 3.0 from subtypes ≥3.1. Other features, such as the occurrence of near pure chromite, are also indicators of subtype 3.0. It is difficult to distinguish between subtypes 3.0 and ≤2.9 based on mineral chemistry. Therefore, we propose the following criteria to distinguish between subtypes 3.0 and ≤2.9. In type 3.0 chondrites, major silicate (olivine, pyroxene, and plagioclase), oxide, metal, and sulfide minerals do not show aqueous alteration features. Melilite, anorthite, and glass show no or mild aqueous alteration features. Subtype 3.0 has not been identified in all chondrite groups. The absence of subtype 3.0 from some groups mainly reflects differences in the degrees of secondary parent body processes among the chondrite groups.  相似文献   

16.
Abstract– The Grove Mountains (GRV) 021663 meteorite was collected from the Grove Mountains region of Antarctica. The meteorite is composed primarily of olivine (Fa5.4), orthopyroxene (Fs4.7Wo3.0), chromian diopside (En53.6Fs2.4Wo44), troilite, kamacite, and plagioclase (Ab74.5Or4An21.5). Minor phases include schreibersite and K‐feldspar. The meteorite is highly weathered (W3) and weakly shocked (S2). We determine a whole rock oxygen isotopic composition of δ18O = 7.50‰, δ17O = 3.52‰. Comparisons of these data with other primitive achondrites have resulted in the reclassification of this meteorite as a member of the winonaite group. The occurrences of troilite, metal, and schreibersite in GRV 021663 indicate that these minerals were once completely molten. Euhedral inclusions of pyroxene within plagioclase further suggest that these may have crystallized from a silicate melt, while the depletion of plagioclase, metal, and troilite indicates that GRV 021663 could represent a residuum following partial melting on its parent asteroid. Trace element distributions in silicate minerals do not, however, confirm this scenario. As with other winonaite meteorites, the formation of GRV 021663 probably relates to brecciation and mixing of heterogeneous lithologies, followed by varying degrees of thermal metamorphism on the parent body asteroid. Peak metamorphic conditions may have resulted in localized partial melting of metal and silicate mineralogies, but our data are not conclusive.  相似文献   

17.
Abstract— The Machinga, southern Malawi, Africa, L6 chondrite (observed fall, 22 January 1981) contains accessory phases of metal, troilite, chromite, and native Cu (which is associated with limonite and found in zones of aqueous alteration). Rare accessory phases are apatite and pentlandite, which are uncommon in L6 chondrites. Major mineral constituents (olivine, orthopyroxene, and plagioclase) indicate shock effects at a level of about 15–20 GPa shock pressure. The meteorite is thus classified to be of L6d type. Melt pockets of widely variable composition are abundant.  相似文献   

18.
Abstract– Queen Alexandra Range (QUE) 94204, an enstatite achondrite, is a coarse‐grained, highly recrystallized, chondrule‐free and unbrecciated rock dominated (about 70 vol%) by anhedral, equigranular crystals of orthoenstatite of nearly endmember composition (Fs0.1–0.4, Wo0.3–0.4) with interstitial plagioclase, kamacite, and troilite. Abundance of approximately 120° triple junctions and the close association of metal–sulfide and plagioclase‐rich melts indicate that QUE 94204 has undergone limited partial melting with inefficient melt extraction. Mineral chemistry indicates a high degree of thermal metamorphism. Kamacite in QUE 94204 contains between 2.09 and 2.55 wt% Si, similar to highly metamorphosed EL chondrites. Plagioclase has between 4.31 and 6.66 wt% CaO, higher than other E chondrites but closer in composition to plagioclase from metamorphosed EL chondrites. QUE 94204 troilite contains up to 2.55 wt% Ti, consistent with extensive thermal metamorphism of an E chondrite‐like precursor. Results presented in this study indicate that QUE 94204 is the result of low degree, (about 5–20 vol%, probably toward the lower end of this range) partial melting of an E chondrite protolith. Textural and chemical evidence suggests that during the metamorphism of QUE 94204, melts formed first at the Fe,Ni‐FeS cotectic near approximately 900 °C, followed by plagioclase‐pyroxene silicate partial melts near approximately 1100 °C. Neither the Fe,Ni‐FeS nor the plagioclase‐pyroxene melts were efficiently segregated or extracted. QUE 94204 belongs to a grouplet of similar “primitive enstatite achondrites” that are analogous to the acapulcoites‐lodranites, but that have resulted from the partial melting of an E chondrite‐like protolith.  相似文献   

19.
Abstract– High pressure phases majorite, possibly majorite‐pyropess, wadsleyite, and coesite are present in the matrix and in barred olivine fragments in the Gujba CB chondrite. Grossular‐pyrope was also observed in some small inclusions. The CB chondrites are metal‐rich meteorites with characteristics that sharply distinguish them from other chondrite groups. All of the CB chondrites contain impact melt regions interstitial to their chondrules, fragments and metal and a major impact event (or events), on the CB chondrite parent body is clearly a significant stage in its history. We studied three areas interstitial to chondrules and metal in the Gujba CBa chondrite. From Raman spectra, the barred olivine fragments and matrix in these regions have various combinations of olivine and low‐Ca pyroxene, as well as majorite garnet (Mg4Si4O12), a phase that forms by high‐pressure transformation of low‐Ca pyroxene and wadsleyite, a high pressure product of olivine. Compositions of the majorite suggest both majorite and majorite‐pyrope solid solution may be present. The mineral assemblage of majorite and wadsleyite suggest minimum shock pressures and temperatures of ~19 GPa and ~2000 °C, respectively. The occurrences of high pressure phases are variable from one area to another, on the scale of millimeters or less, suggesting heterogeneous distribution of shock and/or back transformation to low pressure polymorphs throughout the meteorite. The high pressure phases record a high temperature–pressure impact event that is superimposed onto, and thus postdates formation of, the chondrules and other components in the CB chondrites. The barred chondrules and metal in the CB chondrites are primary materials formed prior to the impact event either generated in an earlier planetesimal scale impact event or in the nebula.  相似文献   

20.
The Putinga, Rio Grande do Sul, chondrite (fall, August 16, 1937), consists of major olivine (Fa24.8), orthopyroxene (Fs21.3), and metallic nickel-iron (kamacite, taenite, and plessite); minor maskelynite (Ab81.0An12.4Or6.6) and troilite; and accessory chromite (Cm79.0Uv8.2Pc1.8Sp11.0) and whitlockite. Mineral compositions, particularly of olivine and orthorhombic pyroxene, as well as the bulk chemical composition, particularly the ratios of Fe°/Ni° (5.24), Fetotal/SiO2 (0.58), and Fe°/Fetotal (0.27), and the contents of Fetotal (22.42%) and total metallic nickel-iron (7.25%) classify the meteorite as an L-group chondrite. The highly recrystallized texture of the stone, with well-indurated, poorly discernible chondrules; xenomorphic, well-crystallized groundmass olivine and pyroxene; and the occurrence of poikilitic intergrowth of olivine in orthopyroxene suggest that Putinga belongs to petrologic type 6. Maskelynite of oligoclase composition was formed by solid state shock transformation of previously existing well-crystallized plagioclase at estimated shock pressures of about 250–350 kbar. Thus, recrystallization (i.e., formation of well-crystallized oligoclase) must have preceded shock transformation into maskelynite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号