首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
黏弹各向异性介质中波的反射与透射问题分析   总被引:6,自引:1,他引:5       下载免费PDF全文
黏弹各向异性介质中传播不均匀波,其反射、透射模式不仅与介质分界面两侧速度对比有关,还与品质因子Q的对比有关. 用伪谱技术模拟黏弹各向异性介质分界面上波的反射、透射,并与弹性各向异性介质、黏弹各向同性介质和弹性各向同性介质的模拟结果做比较. 计算平面波的反射、透射系数,分析介质的黏弹性和各向异性对反射、透射系数的影响. 数值模拟了一个三层介质模型中的波场,分析两个分界面上产生的反射波的特征. 黏弹各向异性介质中,qS波比qP波衰减程度大.  相似文献   

2.
Viscoelastic modelling reveals that the interaction of compressional-wave velocity Cp, compressional-wave quality factor Qp, shear-wave velocity Cs, shear-wave quality factor Qs and Poisson's ratio as a function of time intercept τ and ray parameter p, is complicated; however, distinct, potentially diagnostic behaviours are seen for different combinations of viscoelastic parameters. Synthetic seismograms for three viscoelastic reservoir models show that variations in the Poisson's ratio produce visible differences when compared to the corresponding elastic synthetic seismograms; these differences are attributable to interaction of the elastic parameters with Qp and Qs. When the P-wave acoustic impedance contrast is small, viscoelastic effects become more apparent and more useful for interpretation purposes. The corresponding amplitude and net phase spectra reveal significant differences between the elastic and the viscoelastic responses. When P-wave reflectivities are large, they tend to dominate the total response and to mask the Q reflectivity effects. The attenuation effects are manifested as an amplitude decay that increases with both time and ray parameter. The sensitivity of the computed seismic responses for various combinations of viscoelastic parameters suggests the opportunity for diagnostic interpretation of τ-p seismic data. The interpretation of the viscoelastic parameters can permit a better understanding of the rock types and pore fluid distribution existing in the subsurface.  相似文献   

3.
—Approximate PP plane wave displacement coefficients of reflection and transmission for weak contrast interfaces separating weakly but arbitrarily anisotropic elastic media are presented. The PP reflection coefficient for such an interface has been derived recently by Vavry?uk and P?en?ík (1997). The PP transmission coefficient presented in this paper was derived by the same approach. The coefficients are given as a sum of the coefficient for the weak contrast interface separating two nearby isotropic media and a term depending linearly on contrasts of the so-called weak anisotropy (WA) parameters (parameters specifying deviation of properties of the medium from isotropy), across the interface. While the reflection coefficient depends only on 8 of the complete set of the WA parameters describing P-wave phase velocity in weakly anisotropic media, the transmission coefficient depends on their complete set. The PP reflection coefficient depends on "shear-wave splitting parameter" γ. Tests of accuracy of the approximate formulae are presented on several models.  相似文献   

4.
A problem of reflection and transmission of elastic waves at a plane interface between a uniform elastic solid half-space and a porous elastic half-space containing two immiscible fluids is investigated. The theory developed by Lo, Sposito and Majer for porous media containing two immiscible fluids is employed to find out the reflection and transmission coefficients. The incident wave is assumed to propagate through the uniform elastic half-space and two cases are considered. In the first case, a beam of plane longitudinal wave is assumed to be incident and in the second case, a beam of transverse wave is assumed to be incident at the interface. By taking granite as impervious elastic medium and columbia fine sandy loam containing air-water mixture as porous medium, reflection and transmission coefficients are obtained. By neglecting the inertial coupling coefficients, these coefficients are reduced to those obtained by Tomar and Arora using the theory of Tuncay and Corapcioglu. It is found that the inertial coupling parameters significantly affect the phase speeds and the amplitude ratios of the transmitted waves.  相似文献   

5.
Based on the modified Biot's theory of two-phase porous media, a study was presented on seismic reflection and transmission coefficients at an air-water interface of saturated porous soil media. The major differences between air-saturated soils and water-saturated soils were theoretically discussed, and the theoretical formulas of reflection and transmission coefficients at an air-water interface were derived. The characteristics of propagation and attenuation of elastic waves in air-saturated soils were given and the relations among the frequency, the angle of incidence and the reflection, transmission coefficients were analyzed by using numerical methods. Numerical results show that the propagation characteristic of the wave in air-saturated soils is great different from that in water-saturated soils. The frequency and the angle of incidence can have great influences on the reflection and transmission coefficients at interface. Some new cognition about the wave propagation is obtained and the study suggests that we may carefully pay attention to the influence of air on the dynamic analysis of seismic wave.  相似文献   

6.
Reflection and refraction of plane wave through an interface between fluid and rock with elastic deformations on the basis of the acoustoelastic theory are considered. The effects of stress on the anisotropy and energy reflection and transmission coefficients are investigated. The incident wave plane can coincide with or deviate from planes of material symmetry. Elastic deformations are assumed to be locally homogeneous and to satisfy static boundary conditions. Numerical computations are carried out and comparisons are made with the results predicted in the presence and absence of initial stress. The changes in phase velocity, group velocity, and energy reflection and refraction coefficients due to the presence of stress are displayed graphically and discussed. The results show that the effect of stress depends on its magnitude, direction and form (uniaxial and biaxial).  相似文献   

7.
本文研究了纵波垂直入射情况下两种介质分界面处的纵波反射和透射系数的频散特性,分界面上下两侧分别为层状双孔页岩介质和层状双孔砂岩介质.当纵波沿垂直于分界面的方向传播至分界面处时,会在上层双孔介质中产生三类反射纵波,在下层双孔介质中产生三类透射纵波.基于层状双孔介质的特性,给出了分界面处的六个边界条件.根据层状双孔介质的波动方程,利用平面波分析得到了纵波的反射和透射系数.结果表明:当多孔介质中存在流体时,纵波的反射和透射系数与频率相关,即存在频散现象.波致流体流动是造成纵波反射和透射系数频散的主要原因.此外,结果还表明局部流体流动引起地震频带内反射和透射系数的频散,宏观Biot流引起超声频带内反射和透射系数的频散.本文同时对岩石参数对反射和透射系数频散曲线的影响进行了研究.  相似文献   

8.
AVO investigations of shallow marine sediments   总被引:2,自引:0,他引:2  
Amplitude‐variation‐with‐offset (AVO) analysis is based on the Zoeppritz equations, which enable the computation of reflection and transmission coefficients as a function of offset or angle of incidence. High‐frequency (up to 700 Hz) AVO studies, presented here, have been used to determine the physical properties of sediments in a shallow marine environment (20 m water depth). The properties that can be constrained are P‐ and S‐wave velocities, bulk density and acoustic attenuation. The use of higher frequencies requires special analysis including careful geometry and source and receiver directivity corrections. In the past, marine sediments have been modelled as elastic materials. However, viscoelastic models which include absorption are more realistic. At angles of incidence greater than 40°, AVO functions derived from viscoelastic models differ from those with purely elastic properties in the absence of a critical angle of incidence. The influence of S‐wave velocity on the reflection coefficient is small (especially for low S‐wave velocities encountered at the sea‐floor). Thus, it is difficult to extract the S‐wave parameter from AVO trends. On the other hand, P‐wave velocity and density show a considerably stronger effect. Attenuation (described by the quality factor Q) influences the reflection coefficient but could not be determined uniquely from the AVO functions. In order to measure the reflection coefficient in a seismogram, the amplitudes of the direct wave and the sea‐floor reflection in a common‐midpoint (CMP) gather are determined and corrected for spherical divergence as well as source and streamer directivity. At CMP locations showing the different AVO characteristics of a mud and a boulder clay, the sediment physical properties are determined by using a sequential‐quadratic‐programming (SQP) inversion technique. The inverted sediment physical properties for the mud are: P‐wave velocity α=1450±25 m/s, S‐wave velocity β=90±35 m/s, density ρ=1220±45 kg/m3, quality factor for P‐wave QP=15±200, quality factor for S‐wave QS=10±30. The inverted sediment physical properties for the boulder clay are: α=1620±45 m/s,β=360±200 m/s,ρ=1380±85 kg/m3,QP=790±660,QS=25±10.  相似文献   

9.
从双相横向各向同性介质弹性波波动方程出发 ,利用边界上的 4个连续性条件 ,计算双相横向各向同性介质分界面上弹性波反射和透射系数 .计算表明 ,快纵波在双相横向各向同性介质分界面上 ,要产生反射快纵波、反射转换 qSV波、反射转换慢纵波和透射快纵波、透射转换qSV波、透射转换慢纵波 .反射转换慢纵波振幅和透射转换慢纵波振幅均较小 .频率、耗散和各向异性大小影响着快纵波反射系数的大小 .  相似文献   

10.
Rayleigh’s method of approximation is employed to find out the reflection and transmission coefficients due to an incident plane SH wave at a corrugated interface between a laterally and vertically inhomogeneous anisotropic elastic solid half-space and a laterally and vertically inhomogeneous isotropic visco-elastic solid half-space. The lateral and vertical inhomogeneities are described by the exponential variations of elastic parameters. The formulae of reflection and transmission coefficients are derived in closed form for the first-order approximation of the corrugation. The effects of the corrugation of the interface, the inhomogeneity, the anisotropy, the visco-elasticity and the frequency of the incident wave on these coefficients are studied analytically and numerically for a specific model containing a periodic interface. The results of earlier workers have been reduced as particular cases from the present formulation.  相似文献   

11.
Summary Formulae are derived for the reflection and transmission coeficients of plane elastic waves for a transition layer. Haskell's technique and the so-called delta matrices[5, 7] are used for this purpose. No problems are encountered in deriving the reflections and transmission coefficients from Haskell's matrices[3]. However, in some cases Haskell's matrices do not guarantee the accuracy required. For this reason attention is mainly devoted to deriving the reflection and transmission coefficients from the delta matrices. In deriving the transmission coefficients use is made of the fact that some3×3 subdeterminants of the delta matrices are squares of the3×3 subdeterminants of Haskell's matrices.  相似文献   

12.
The calculation of reflection and transmission coefficients of plane waves at a plane interface between two homogeneous anelastic media may become ambiguous because it is not always obvious how to determine the sign of the vertical component of the slowness vector of the scattered waves. For elastic media, the sign is determined by applying so-called radiation condition when the slowness vector is complex-valued, but it has long been known that this approach does not work satisfactorily for anelastic media. Other approaches have been suggested, e.g., by requiring that the reflection and transmission coefficients should vary continuously with increasing incident angles, or by relating the sign to the direction of the energy flux. In the present paper, it is shown that these approaches may give different results, and that the results can be inconsistent with the elastic case even for weak attenuation. Instead, it is demonstrated that the ambiguity in the reflection coefficient can be resolved by expressing the seismic response of a point source over an interface as a superposition of plane waves and their reflection coefficients, and solving the resulting integral by the saddle point approximation. Although the saddle point itself (point of stationary phase) does not provide new insight, the ambiguity is removed by considering the steepest descent path through the point. Ray synthetic seismograms computed by this method compare well with synthetics computed by the reflectivity method, which does not suffer from the above-mentioned ambiguity since the integration path is taken along the real axis. This paper concentrates on the isotropic case, but it is discussed how the result may be extended to layered transversely isotropic media. The suggested approach, derived for a point source and plane layers, does not directly apply to 2-D or 3-D laterally inhomogeneous media, or to media of general anisotropy. A generalization of the result found is that the sign of the vertical slowness components should be chosen according to the energy flux direction for subcritical incidence and according to the radiation condition for supercritical incidence, even if this creates a discontinuity in the coefficients at the critical incidence angle. Such a discontinuity is sometimes necessary to get results which are consistent with the elastic case. It is discussed how the generalized result can be obtained by applying certain continuity criteria for the sub-and supercritical angle intervals, but the validity of this approach for general models remains to be proved.  相似文献   

13.
The reflectivity method plays an important role in seismic modelling. It has been used to model different types of waves propagating in elastic and anelastic media. The diffusive–viscous wave equation was proposed to investigate the relationship between frequency dependence of reflections and fluid saturation. It is also used to describe the attenuation property of seismic wave in a fluid‐saturated medium. The attenuation of diffusive–viscous wave is mainly characterised by the effective attenuation parameters in the equation. Thus, it is essential to obtain those parameters and further characterise the features of the diffusive–viscous wave. In this work, we use inversion method to obtain the effective attenuation parameters through quality factor to investigate the characteristics of diffusive–viscous wave by comparing with those of the viscoacoustic wave. Then, the reflection/transmission coefficients in a dip plane‐layered medium are studied through coordinate transform and plane‐wave theory. Consequently, the reflectivity method is extended to compute seismograms of diffusive–viscous wave in a dip plane multi‐layered medium. Finally, we present two models to simulate the propagation of diffusive–viscous wave in a dip plane multi‐layered medium by comparing the results with those in a viscoacoustic medium. The numerical results demonstrate the validity of our extension of reflectivity method to the diffusive–viscous medium. The numerical examples in both time domain and time–frequency domain show that the reflections from a dip plane interface have significant phase shift and amplitude change compared with the results of horizontal plane interface due to the differences in reflection/transmission coefficients. Moreover, the modelling results show strong attenuation and phase shift in the diffusive–viscous wave compared to those of the viscoacoustic wave.  相似文献   

14.
15.
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green’s function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method.  相似文献   

16.
A general solution is deduced of the differential equations describing the propagation of elastic waves in a dissipative liquid-filled viscoelastic porous solid. The velocities of three existing waves have been expressed in convenient form using the moduli of the solid phase and by introducing the frequency-dependent equivalent mass densities. The solution is then used to examine some of the phenomena which arise when each of the three-body waves, in turn, are incident on a traction-free plane boundary. Analytic expressions for the reflection coefficients are obtained. Numerical calculations have been made, for a particular model, in case of incidentP I wave. Effect of viscoelasticity and viscosity on the reflection coefficients has also been exhibited.  相似文献   

17.
弹性孔隙介质分界面上的反透射系数特征,在岩性划分、流体识别、储层边界判识等方面有重要的应用.本文研究上层为含两项不混合黏性流体孔隙介质、下层为含单项黏性流体孔隙介质分界面上的反透射理论.首先根据两种孔隙介质分界面上的能量守恒得到边界条件,再将波函数、位移、应力与应变关系代入边界条件,推导出完全连通孔隙情况下,第一类纵波入射到孔隙介质分界面上的反透射系数方程.通过建立砂岩孔隙介质模型,分别分析不同孔隙流体类型、不同含油饱和度及不同入射角情况下,各类波的反透射系数特征.研究表明,第二、三类纵波反透射系数数值比第一类纵波小多个数量级,且两者对入射角的变化不敏感,但对孔隙流体性质、含油饱和度的变化较敏感,而横波反透射系数特征恰好与此相反;第一类纵波反透射系数特征比较复杂,入射角、孔隙流体的性质及含油饱和度的变化都对其产生影响.不同孔隙流体弹性物性的差异、孔隙介质中含油饱和度的变化及不同入射角引起垂向和切向应力分量的变化都会影响各类波的反透射系数特征,分析这些特征可以为研究储层含油气性提供理论基础.  相似文献   

18.
Propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane, is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a half-space of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium J as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence. Thus no set of SH seismic experiments performed in the isotropic medium in the symmetry plane of the underlying half-space can reveal anything about the monoclinic anisotropy of that underlying half-space. Moreover, even when the underlying monoclinic half-space is stratified, there exists a stratified isotropic half-space that gives the identical reflection coefficient as the stratified monoclinic half-space for all angles of incidence and all frequencies.  相似文献   

19.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

20.
This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell’s law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号