首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract— We have studied both of the known glass-free, hibonite-pyroxene spherules: MYSM3, from Murray (CM2), and Y17–6, from Yamato 791717 (CO3). They consist of hibonite plates (~2 wt% TiOtot2) enclosed in Al-rich pyroxene that has such high amounts of CaTs (CaAl2SiO6) component, up to ~80 mol%, that it must have crystallized metastably. Within the pyroxene, abundances of MgO and SiO2 are strongly correlated with each other and are anticorrelated with those of Al2O3, reflecting an anticorrelation between the diopside and CaTs components of the pyroxene. In contrast with previous results for Type B fassaite, however, we do not observe an anticorrelation between MgO and TiOtot2, possibly reflecting different relative distribution coefficients for Ti3+ and Ti4+ in the aluminous pyroxene of the spherules from those found for fassaite in Type B inclusions. Previously described hibonite-silicate spherules have 26Mg deficits but the present samples do not. Furthermore, the pyroxene in Y17-6 has excess 26Mg, while the hibonite it encloses does not, indicating that the two phases either had different initial 26Al/27Al ratios or different initial 26Mg/24Mg ratios. The Ti isotopic compositions of the present samples are highly unusual: δ50Ti = 103.4 ± 5.2%o in MYSM3 and -61.4 ± 4.1%0 in Y17-6, which are among the largest 50Ti anomalies reported for any refractory inclusion. The textures suggest that hibonite crystallized first; but based on the calculated bulk compositions of both spherules, it is not the liquidus phase in either sample, which suggests that the hibonite in both samples is relict. The presence of ragged hibonite grains in MYSM3 and rounded hibonite grains in Y17-6 and a lack of isotopic equilibrium between pyroxene and hibonite support this conclusion. The spherules crystallized from liquid droplets that probably formed as a result of the melting of solid precursor grains that included hibonite. The heating events were too short and/or not hot enough to melt all the hibonite. The droplets cooled quickly enough that CaTs-rich pyroxene crystallized instead of anorthite. Based on the observed differences in isotopic composition, it is unlikely that the precursors of the present samples formed in the same reservoir as each other or as the previously described hibonite-silicate spherules, providing further evidence of the isotopic heterogeneity of the early solar nebula.  相似文献   

2.
Abstract— Phase fields in which hibonite and silicate melt coexist with spinel, CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt, DHib/Li, vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metastably from a melt Bulk compositions for all of these CAIs are consistent with an origin as melilite + hibonite + spinel + perovskite phase assemblages that were partially altered and in some cases partially or completely melted The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10?3 atm, hibonite + corundum + vapor equilibrated at ~1260 °C and hibonite + spinel ± melilite + vapor at 1215 ± 10 °C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite ± corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that equilibration temperatures are generally lower than predicted and melilite initially condenses with or even after spinel. Simple thermochemical models for the substitution of trace elements into the Ca site of meteoritic hibonites suggest that virtually all Eu is divalent in early condensate hibonites but that Eu2+/Eu3+ decreases by a factor of 20 or more during the course of condensation primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phases condense. The relative sizes of Eu and Yb anomalies in meteoritic hibonites and inclusions may be partly due to this effect  相似文献   

3.
Abstract— We studied three fluffy Type A refractory inclusions from Allende that contain orange hibonite. The melilite in the present samples is very Al‐rich, averaging Åk6, Åk14, and Åk12 in the three samples studied. Hibonite in two inclusions, unlike that in Murchison, has low rare earth element abundances of <10 × CI; in the other inclusion, the hibonite, melilite and perovskite have Group II‐like patterns. The hibonite and melilite in all three inclusions studied have excess 26Mg consistent with (26Al/27Al)I = 5 × 10?5. Much of the hibonite and some of the spinel in these inclusions is corroded. These phases are found enclosed in melilite, but based on bulk compositions and phase equilibria, hibonite should not be an early‐crystallizing phase in these inclusions. We conclude that the hibonite and probably some of the spinel is relic. Reversely zoned melilite, rounded spinel and isotopically heavy Mg in the inclusions probably reflect reheating events that involved melting and evaporation. Alteration of the gehlenitic melilite gave rise to some rare phases, including corundum and nearly pure CaTs pyroxene. Studies have shown that blue hibonite contains Ti3+ while orange hibonite does not (Ihinger and Stolper, 1986; Beckett et al., 1988). Orange hibonite formed either under oxidizing conditions (such as at oxygen fugacities at least seven orders of magnitude greater than that of a solar gas at 1700 K), or under conditions reducing enough (e.g., solar) that it contained Ti3+, which was later oxidized in situ. Although V and Ce oxides are volatile at the temperature and range of oxygen fugacities at which orange hibonite is known to be stable, we find that (a) the hibonite is V‐rich (~1 wt% V2O3) and (b) there are no negative Ce anomalies in Allende hibonite. This indicates that the hibonite did not form by condensation under oxidizing conditions. In addition, there are slight excesses of Ti + Si cations relative to Mg + Fe cations (up to 0.1 of 0.8 cations per 19 oxygen anions), probably reflecting the original presence of Ti3+. The results of this study strongly support the suggestion (Ihinger and Stolper, 1986) that Allende hibonite originally formed under reducing conditions and was later oxidized. Oxygen fugacities within ~2–3 orders of magnitude of that of a solar gas are implied; otherwise, strong Ce and V depletions would be observed.  相似文献   

4.
Abstract— Through freeze-thaw disaggregation of the Murchison meteorite, we have recovered a refractory inclusion, HIB-11, that is unique in terms of its texture, mineral compositions, and bulk composition. It consists of anhedral, Y-rich (1.6 wt% Y2O3) perovskite and lathlike spinel grains enclosed in a matrix of fine-grained, Sc-rich (10.5 wt% SC2O3 avg.), Ti-rich (12.6 wt% TiO2 avg., reporting all Ti as TiO2) clinopyroxene. The chondrite-normalized rare earth element (REE) pattern is complex, with light REE (LREE) at ~10× C1, abundances increasing from Gd through Ho (the latter at ~104× C1), decreasing through Yb at 200× C1, and Lu at ~400× C1. The pattern reflects several stages of high-temperature volatility fractionation. Removal of Lu and Er from the source gas in the first condensation event was followed by partial to complete removal of the somewhat less refractory heavy REE, Gd through Ho, in the HIB-11 precursors by condensation from the fractionated residual gas in a second event. Both of these events probably reflect condensation of REE into ZrO2 or a mixed Zr-, Sc-, Ti-, Y-oxide at temperatures too high for hibonite stability. A second, lower-temperature component, which was subsequently added, had fractionated (Nd-poor, Ce-rich) LREE abundances that resulted from condensation from a gas that had undergone prior removal of the more refractory LREE, resulting in enrichment in Ce and the most volatile REE, Eu and Yb. The aggregate was then melted and quickly cooled, forming a fine-grained spherule. This is the first reported inclusion in which the two most refractory REE, Lu and Er, are strongly fractionated from the other REE. An absence of mass fractionation among the Ti isotopes indicates that HIB-11 is not an evaporative residue, implying that volatility fractionation of trace elements took place during condensation. The fact that the two most refractory heavy REE could be separated from the other, only slightly less refractory heavy REE suggests that a wide variety of REE patterns is possible, and that ultrarefractory inclusions with other unusual REE patterns, important recorders of nebular condensation, may yet be discovered.  相似文献   

5.
Abstract— A spherical, 220-μm diameter, spinel-hibonite-perovskite inclusion from the Allende C3V meteorite contains a central hibonite cluster with an angular boundary. This central hibonite is enclosed within spinel that is zoned from Mg-rich at the hibonite boundary to more Fe-rich at the inclusion boundary. This spinel zone includes lath-shaped hibonites usually oriented subradial to the central hibonites. Two textural types of perovskites are present as exsolution from the central hibonite and as equidimensional grains within both the central hibonite and spinel. These second perovskites have exsolution lamellae of Al2O3. Within the central hibonite and adjacent to some equidimensional perovskites, a fine porous phase interpreted as alteration has a composition of nearly pure Al2O3 with minor amounts of Na and Si. This is possibly either an intergrowth of corundum and nepheline or a modified Al2O3, β-alumina. The central hibonites and equidimensional perovskites are considered relict grains on which the spinel-hibonite layer crystallized. The relict material had undergone slow cooling in a previous event to produce exsolution of original high-temperature compositions. Later alteration caused breakdown of hibonite to give an Al2O3-rich phase. This inclusion represents a composite body which formed in a Ca-Al-rich environment.  相似文献   

6.
Abstract— We studied crystallization trends of pyroxene and spinel in four Antarctic meteorites known to be derived from mare regions of the Moon: Y-793169 and A-881757 (YA meteorites) are unbrecciated igneous basalts, EET 87521 is a fragmental breccia, and Y-793274 is a regolith breccia. All have relatively low bulkrock TiO2 content, and the YA meteorites are uncommonly ancient. Our electron probe microanalysis (EPMA) data indicate that the YA meteorites and the dominant mare components of Y-793274 and EET 87521 conform to a general trend for Ti-poor (low-Ti and very low-Ti) mare basalts. Their pyroxenes show a strong correlation between Fe/(Fe + Mg) (Fe#) and Ti/(Ti + Cr) (Ti#), both ratios typically increasing from core to rim. These trends presumably reflect local crystallization differentiation of interstitial melt. Previous studies (M. J. Drake and coworkers) have suggested that the detailed configurations of such Fe# vs. Ti# trends may reflect the bulk TiO2 contents of the parent magmas (basalts). As a more systematic approach to this problem, we plot bulk-rock TiO2 as a function of the Fe# = 0.50 intercept of each rock's pyroxene Fe# vs. Ti# trend. We call this intercept the Fe#-normalized Ti#. Based on our data for EET 87521, the YA meteorites, and Apollo 12 basalts 12031 and 12064, plus literature data for several other Ti-poor mare basalts, we find a strong correlation between Fe#-normalized Ti# and the bulk TiO2 content of the parent basalt. This correlation confirms that fragmental breccia EET 87521 is nearly pure very low-Ti (VLT) basalt and that the YA meteorites, for which bulk-rock TiO2 results scatter due to unusually coarse grain size (A-881757) or scarcity of available sample (Y-793169), are pieces of an uncommonly Ti-poor, but not quite VLT, variety of low-Ti mare basalt. Extrapolating from this correlation, the dominant mare component of regolith breccia Y-793274 is probably of VLT affinity. Besides the normal mare pyroxene trend of strong correlation between Fe# and Ti#, Y-793274 includes two additional pyroxene compositional trends, both showing a wide range of Ti# despite relatively constant (and low, by mare standards) Fe#. The most magnesian of these trends consists of a single clast with a mode of orthopyroxene + MgO-rich ilmenite. These two trends are of uncertain origin. Possibly one or both represents the highland component of this regolith breccia, although, unlike most highland pyroxenes, these appear relatively unaltered by impact brecciation and metamorphism. Compositions of spinels in the coarse-grained A-881757 show an extraordinary distribution: chromite and ulvöspinel components vary among grains but are nearly constant within grains. Despite its old age and unusually coarse grain sizes, mineralogical evidence (i.e., heterogeneity within both pyroxene and spinel; typical pyroxene exsolution scale very coarse by mare standards but exceeded by the pyroxenes of EET 87521 and Y-793274) indicates that A-881757 was cooled only slightly more slowly than typical mare basalts and may have formed near the center of an uncommonly thick lava flow. Both of the VLT basaltic lunar meteorite breccias, EET 87521 and Y-793274, are composed dominantly of pyroxenes with exsolution coarser than normal for mare basalts. Possibly VLT basalt flows tend to be systematically thicker, and thus more slowly cooled, than more Ti-rich flows.  相似文献   

7.
Abstract– Hibonite‐bearing Ca,Al‐rich inclusions (CAIs) usually occur in CM and CH chondrites and possess petrographic and isotopic characteristics distinctive from other typical CAIs. Despite their highly refractory nature, most hibonite‐bearing CAIs have little or no 26Mg excess (the decay product of 26Al), but do show wide variations of Ca and Ti isotopic anomalies. A few spinel‐hibonite spherules preserve evidence of live 26Al with an inferred 26Al/27Al close to the canonical value. The bimodal distribution of 26Al abundances in hibonite‐bearing CAIs has inspired several interpretations regarding the origin of short‐lived nuclides and the evolution of the solar nebula. Herein we show that hibonite‐bearing CAIs from Ningqiang, an ungrouped carbonaceous chondrite, also provide evidence for a bimodal distribution of 26Al. Two hibonite aggregates and two hibonite‐pyroxene spherules show no 26Mg excesses, corresponding to inferred 26Al/27Al < 8 × 10?6. Two hibonite‐melilite spherules are indistinguishable from each other in terms of chemistry and mineralogy but have different Mg isotopic compositions. Hibonite and melilite in one of them display positive 26Mg excesses (up to 25‰) that are correlated with Al/Mg with an inferred 26Al/27Al of (5.5 ± 0.6) × 10?5. The other one contains normal Mg isotopes with an inferred 26Al/27Al < 3.4 × 10?6. Hibonite in a hibonite‐spinel fragment displays large 26Mg excesses (up to 38‰) that correlate with Al/Mg, with an inferred 26Al/27Al of (4.5 ± 0.8) × 10?5. Prolonged formation duration and thermal alteration of hibonite‐bearing CAIs seem to be inconsistent with petrological and isotopic observations of Ningqiang. Our results support the theory of formation of 26Al‐free/poor hibonite‐bearing CAIs prior to the injection of 26Al into the solar nebula from a nearby stellar source.  相似文献   

8.
Abstract— MacAlpine Hills (MAC) 87300 and 88107 are two unusual carbonaceous chondrites that are intermediate in chemical composition between the CO3 and CM2 meteorite groups. Calcium‐aluminum‐rich inclusions (CAIs) from these two meteorites are mostly spinel‐pyroxene and melilite‐rich (Type A) varieties. Spinel‐pyroxene inclusions have either a banded or nodular texture, with aluminous diopside rimming Fe‐poor spinel. Melilite‐rich inclusions (Åk4–42) are irregular in shape and contain minor spinel (FeO <1 wt%), perovskite and, more rarely, hibonite. The CAIs in MAC 88107 and 87300 are similar in primary mineralogy to CAIs from low petrologic grade CO3 meteorites but differ in that they commonly contain phyllosilicates. The two meteorites also differ somewhat from each other: melilite is more abundant and slightly more Al‐rich in inclusions from MAC 88107 than in those from MAC 87300, and phyllosilicate is more abundant and Mg‐poor in MAC 87300 CAIs relative to that in MAC 88107. These differences suggest that the two meteorites are not paired. The CAI sizes and the abundance of melilite‐rich CAIs in MAC 88107 and 87300 suggests a genetic relationship to CO3 meteorites, but the CAIs in both have suffered a greater degree of aqueous alteration than is observed in CO meteorites. Aluminum‐rich melilite in CAIs from both meteorites generally contains excess 26Mg, presumably from the in situ decay of 26Al. Although well‐defined isochrons are not observed, the 26Mg excesses are consistent with initial 26Al/27Al ratios of approximately 3–5 times 10?5. An unusual hibonite‐bearing inclusion is isotopically heterogeneous, with two large and abutting hibonite crystals showing significant differences in their degrees of mass‐dependent fractionation of 25Mg/24Mg. The two crystals also show differences in their inferred initial 26Al/27Al ratios, 1 × 10?5 vs. ≤3 × 10?6.  相似文献   

9.
Abstract— Through freeze‐thaw disaggregation of the Murchison (CM) carbonaceous chondrite, we have recovered a ?90 times 75 μm refractory inclusion that consists of corundum and hibonite with minor perovskite. Corundum occurs as small (?10 μm), rounded grains enclosed in hibonite laths (?10 μm wide and 30–40 μm long) throughout the inclusion. Perovskite predominantly occurs near the edge of the inclusion. The crystallization sequence inferred petrographically‐corundum followed by hibonite followed by perovskite‐is that predicted for the first phases to form by equilibrium condensation from a solar gas for Ptot ≤5 times 10?3 atm. In addition, the texture of the inclusion, with angular voids between subhedral hibonite laths and plates, is also consistent with formation of the inclusion by condensation. Hibonite has heavy rare earth element (REE) abundances of ?40 × CI chondrites, light REE abundances ?20 × CI chondrites, and negative Eu anomalies. The chondrite‐normalized abundance patterns, especially one for a hibonite‐perovskite spot, are quite similar to the patterns of calculated solid/gas partition coefficients for hibonite and perovskite at 10?3 atm and are not consistent with formation of the inclusion by closed‐system fractional crystallization. In contrast with the features that are consistent with a condensation origin, there are problems with any model for the formation of this inclusion that includes a molten stage, relic grains, or volatilization. If thermodynamic models of equilibrium condensation are correct, then this inclusion formed at pressures <5 times 10?3 atm, possibly with enrichments (<1000x) in CI dust relative to gas at low pressures (below 10?4 atm). Both hibonite and corundum have δ17O ? δ18O ? ?50%, indicating formation from an 16O‐rich source. The inclusion does not contain radiogenic 26Mg and apparently did not contain live 26Al when it formed. If the short‐lived radionuclides were formed in a supernova and injected into the early solar nebula, models of this process suggest that 26Al‐free refractory inclusions such as this one formed within the first ?6 times 105 years of nebular collapse.  相似文献   

10.
11.
Abstract— We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al‐rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mg‐rich. The abundances of Fe‐rich and Al‐rich chondrules are very low. Al‐rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low‐Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel‐pyroxene‐rich, 4.4% hibonite‐rich, and several type C and anorthite‐spinel‐rich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2surface area). This is the first report of hibonite‐rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine‐grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti‐diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre‐existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali‐halogen metasomatism in the solar nebula.  相似文献   

12.
Abstract— Queen Alexandra Range (QUE) 97990 (CM2.6) is among the least‐altered CM chondrites known. It contains 1.8 vol% refractory inclusions; 40 were studied from a single thin section. Inclusion varieties include simple, banded and nodular structures as well as simple and complex distended objects. The inclusions range in mean size from 30 to 530 μm and average 130 ± 90 μm. Many inclusions contain 25 ± 15 vol% phyllosilicate (predominantly Mg‐Fe serpentine); several contain small grains of perovskite. In addition to phyllosilicate, the most abundant inclusions in QUE 97990 consist mainly of spinel‐pyroxene (35%), followed by spinel (20%), spinel‐pyroxene‐olivine (18%), pyroxene (12%), pyroxene‐olivine (8%) and hibonite ± spinel (8%). Four pyroxene phases occur: diopside, Al‐rich diopside (with ≥ 8.0 wt% Al2O3), Al‐Ti diopside (i.e., fassaite), and (in two inclusions) enstatite. No inclusions contain melilite. Aqueous alteration of refractory inclusions transforms some phases (particularly melilite) into phyllosilicate; some inclusions broke apart during alteration. Melilite‐free, phyllosilicate‐bearing, spinel inclusions probably formed from pristine, phyllosilicate‐free inclusions containing both melilite and spinel. Sixty‐five percent of the refractory inclusions in QUE 97990 appear to be largely intact; the major exception is the group of spinel inclusions, all of which are fragments. Whereas QUE 97990 contains about 50 largely intact refractory inclusions/cm2, estimates from literature data imply that more‐altered CM chondrites have lower modal abundances (and lower number densities) of refractory inclusions: Mighei (CM ? 2.3) contains roughly 0.3–0.6 vol% inclusions (?10 largely intact inclusions/cm2); Cold Bokkeveld (CM2.2) contains ?0.01 vol% inclusions (on the order of 6 largely intact inclusions/cm2).  相似文献   

13.
Abstract– Acfer 094 is an unshocked, nearly unaltered carbonaceous chondrite with an unusual suite of refractory inclusions. The refractory inclusions in a newly prepared thin section and a small aliquot of disaggregated material were studied to compare the population with previous work, and to report new or unusual inclusion types. A total of 289 Ca‐, Al‐rich inclusions in the thin section and 67 among the disaggregated material, having a total of 31 different mineral assemblages, were found. Inclusions are largely free of secondary alteration products, and are typically ≤200 μm across. The most common are gehlenitic melilite+spinel±perovskite, spinel+perovskite, and spinel with a thin, silicate rim, typically melilite±diopside. Such rims and (thicker) mantles are very common among Acfer 094 inclusions, and they exhibit a variety of zoning patterns with respect to åkermanite and FeO contents. In the thin section, about 13% of the inclusions contain hibonite and approximately 5% are grossite‐bearing; in the disaggregated material, the percentages are 14 and 9, respectively, comparable to previous work. Among the unusual inclusions are a fine‐grained, porous, Ti‐rich hibonite+spinel+perovskite+melilite inclusion with a compact, coarse, Ti‐poor hibonite+spinel+melilite clast; two inclusions in which hibonite has reacted to form grossite; two inclusions with FeO‐rich spinel; and a small object consisting of fassaite enclosing euhedral spinel, the first fragment of a Type B inclusion reported from Acfer 094. Inclusions similar to those found in CM or CV chondrites are rare; Acfer 094 contains a distinctive population of inclusions. The population, dominated by small, melilite‐bearing inclusions, is most similar to that of CO chondrites. A distinguishing feature is that in Acfer 094, almost every phase in almost every refractory inclusion contains 0.5–1.5 wt% FeO. A lack of diffusion gradients and the pristinity of the matrix imply that the inclusions experienced prolonged exposure to FeO‐bearing fluid prior to accretion into the Acfer 094 parent body. There are no known nebular conditions under which the refractory phases found in the present samples could acquire FeO enrichments to the observed levels. The most likely setting is therefore in an earlier, FeO‐rich parent body. The inclusions were ejected from this parent body, mixed with typical CAIs, chondrules, amoeboid olivine aggregates, and amorphous material, and incorporated into the Acfer 094 parent body.  相似文献   

14.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

15.
Ti valence measurements in MgAl2O4 spinel from calcium‐aluminum‐rich inclusions (CAIs) by X‐ray absorption near‐edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI‐like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3‐rich if they equilibrated with CAI liquids under near‐solar oxygen fugacities. In igneous inclusions, the seeming paradox of high‐valence spinels coexisting with low‐valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low‐pressure evaporation or by equilibration of spinel with relict Ti+4‐rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low‐pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.  相似文献   

16.
The titanium contents of lunar mare basalts   总被引:1,自引:0,他引:1  
Abstract— Lunar mare basalt sample data suggest that there is a bimodal distribution of TiO2 concentrations. Using a refined technique for remote determination of TiO2, we find that the maria actually vary continuously from low to high values. The reason for the discrepancy is that the nine lunar sample return missions were not situated near intermediate basalt regions. Moreover, maria with 2–4 wt% TiO2 are most abundant, and abundance decreases with increasing TiO2. Maria surfaces with TiO2 >5 wt% constitute only 20% of the maria. Although impact mixing of basalts with differing Ti concentrations may smear out the distribution and decrease the abundance of high‐Ti basalts, the distribution of basalt Ti contents probably reflects both the relative abundances of ilmenite‐free and ilmenite‐bearing mantle sources. This distribution is consistent with models of the formation of mare source regions as cumulates from the lunar magma ocean.  相似文献   

17.
Abstract— Minor element variations in MgAl2O4 spinel from the type B1 calcium‐aluminum‐rich inclusion (CAI) Allende TS‐34 confirm earlier studies in showing correlations between the minor element chemistry of spinels with their location within the inclusion and with the chemistry of host silicate phases. These correlations result from a combination of crystallization of a liquid produced by re‐melting event(s) and local re‐equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re‐equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re‐melting, but it can be explained by partial re‐equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re‐equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re‐melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS‐34 spinels are uniformly 16O‐rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O‐rich, but melilite is relatively 16O‐poor. These data require that the oxygen isotope exchange in TS‐34 melilite occurred subsequent to the last re‐melting event.  相似文献   

18.
Abstract— Fassaite is a major component of Ca‐Al‐rich inclusions (CAIs) of Types B and C that crystallized from liquids. In contrast, this mineral is rarely reported in Type A inclusions and has been much less studied. In this paper, we report highly Ti‐, Al‐enriched fassaite that occurs as rims on perovskite in two compact Type A inclusions from the Ningqiang meteorite. In addition, one of the inclusions contains an euhedral grain of Sc‐fassaite (16.4 wt% Sc2O3) isolated in melilite. The occurrence and mineral chemistry of the fassaite rims can be explained by a reaction of pre‐existing perovskite with CAI melts. Hence, such rims may serve as an indicator for partial melting of Type A inclusions. The Sc‐fassaite is probably a relict grain. A third spherical CAI contains several euhedral grains of V‐fassaite (4.8–5.4 wt% V2O3) enclosed in a melilite fragment. The high V content of fassaite cannot be related to any Fremdlinge, magnetite, or metallic Fe‐Ni, because these phases are absent in the inclusion. In the same CAI, other fassaites intergrow with spinel and minor perovskite, filling voids inside of the melilite and space adjacent to the Wark‐Lovering rim. The fassaite intergrown with spinel is almost V‐free. The coexistence of two types of fassaite suggests that this CAI has not been completely melted.  相似文献   

19.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

20.
Al–Mg mineral isochron studies using secondary ion mass spectrometry (SIMS) have revealed the initial 26Al/27Al ratios, (26Al/27Al)0, for individual Ca-Al-rich inclusions (CAIs) in meteorites. We find that the relative sensitivity factors of 27Al/24Mg ratio for SIMS analysis of hibonite, one of the major constituent minerals of CAIs, exhibit variations based on their chemical compositions. This underscores the critical need for using appropriate hibonite standards to obtain accurate Al−Mg data. We measured the Al−Mg mineral isochron for hibonite in a fine-grained CAI (FGI) from the Northwest Africa 8613 reduced CV chondrite by SIMS using synthesized hibonite standards with 27Al/24Mg of ~30, ~100, and ~400. The obtained mineral isochron of hibonite in the FGI yields (26Al/27Al)0 of (4.73 ± 0.09) × 10−5, which is identical to that previously obtained from the mineral isochron of spinel and melilite in the same FGI (Kawasaki et al., 2020). The uncertainties of (26Al/27Al)0 indicate that the constituent minerals in the FGI formed within ~0.02 Myr in the earliest solar system. The disequilibrium O-isotope distributions of the minerals in the FGI suggest that the O-isotope compositions of the nebular gas from which they condensed underwent a transitional change from 16O-rich to 16O-poor within ~0.02 Myr in the earliest solar system. Once formed, the FGI may have been removed from the forming region within ~0.02 Myr and transported to the accretion region of the parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号