首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a) accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data, and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic, the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%.  相似文献   

2.
In seismic data processing, serious problems could be caused by the existence of triplication and need to be treated properly for tomography and other inversion methods. The triplication in transversely isotropic medium with a vertical symmetry axis has been well studied and concluded that the triplicated traveltime only occurs for S wave and there is no triplication for P and converted PS waves since the P wave convexity slowness always compensates the S wave slowness concavity. Compared with the vertical symmetry axis model, the research of the triplication in transversely isotropic medium with a tilted symmetry axis is still keeping blank. In order to analyse the triplication for the converted wave in the tilted symmetry axis model, we examine the traveltime of the triplication from the curvature of averaged P and S wave slowness. Three models are defined and tested in the numerical examples to illustrate the behaviour of the tilted symmetry axis model for the triplicated traveltime with the change of the rotation angle. Since the orientation of an interface is related to the orientation of the symmetry axis, the triplicated traveltime is encountered for the converted wave in the tilted symmetry axis model assuming interfaces to be planar and horizontal. The triplicated region is influenced by the place and level of the concave curvature of the P and S wave slowness.  相似文献   

3.
In an acoustic transversely isotropic medium, there are two waves that propagate. One is the P-wave and another one is the S-wave (also known as S-wave artefact). This paper is devoted to analyse the S-wave in two-dimensional acoustic transversely isotropic media with a tilted symmetry axis. We derive the S-wave slowness surface and traveltime function in a homogeneous acoustic transversely isotropic medium with a tilted symmetry axis. The S-wave traveltime approximations in acoustic transversely isotropic media with a tilted symmetry axis can be mapped from the counterparts for acoustic transversely isotropic media with a vertical symmetry axis. We consider a layered two-dimensional acoustic transversely isotropic medium with a tilted symmetry axis to analyse the S-wave moveout. We also illustrate the behaviour of the moveout for reflected S-wave and converted waves.  相似文献   

4.
5.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   

6.
Full waveform inversion in transversely isotropic media with a vertical symmetry axis provides an opportunity to better match the data at the near and far offsets. However, multi-parameter full waveform inversion, in general, suffers from serious cycle-skipping and trade-off problems. Reflection waveform inversion can help us recover a background model by projecting the residuals of the reflected wavefield along the reflection wavepath. Thus, we extend reflection waveform inversion to acoustic transversely isotropic media with a vertical symmetry axis utilizing the proper parameterization for reduced parameter trade-off. From a radiation patterns analysis, an acoustic transversely isotropic media with a vertical symmetry axis is better described by a combination of the normal-moveout velocity and the anisotropic parameters η and δ for reflection waveform inversion applications. We design a three-stage inversion strategy to construct the optimal resulting model. In the first stage, we only invert for the background by matching the simulated reflected wavefield from the perturbations of and δ with the observed reflected wavefield. In the second stage, the background and η are optimized simultaneously and the far-offset reflected wavefield mainly contribute to their updates. We perform Born modelling to compute the reflected wavefield for the two stages of reflection waveform inversion. In the third stage, we perform full waveform inversion for the acoustic transversely isotropic media with a vertical symmetry axis to delineate the high-wavenumber structures. For this stage, the medium is described by a combination of the horizontal velocity , η and ε instead of , η and δ. The acoustic multi-parameter full waveform inversion utilizes the diving waves to improve the background as well as utilizes reflection for high-resolution information. Finally, we test our inversion algorithm on the modified Sigsbee 2A model (a salt free part) and a two-dimensional line from a three-dimensional ocean bottom cable dataset. The results demonstrate that the proposed reflection waveform inversion approach can recover the background model for acoustic transversely isotropic media with a vertical symmetry axis starting from an isotropic model. This recovered background model can mitigate the cycle skipping of full waveform inversion and help the inversion recover higher resolution structures.  相似文献   

7.
Simultaneous estimation of velocity gradients and anisotropic parameters from seismic reflection data is one of the main challenges in transversely isotropic media with a vertical symmetry axis migration velocity analysis. In migration velocity analysis, we usually construct the objective function using the l2 norm along with a linear conjugate gradient scheme to solve the inversion problem. Nevertheless, for seismic data this inversion scheme is not stable and may not converge in finite time. In order to ensure the uniform convergence of parameter inversion and improve the efficiency of migration velocity analysis, this paper develops a double parameterized regularization model and gives the corresponding algorithms. The model is based on the combination of the l2 norm and the non‐smooth l1 norm. For solving such an inversion problem, the quasi‐Newton method is utilized to make the iterative process stable, which can ensure the positive definiteness of the Hessian matrix. Numerical simulation indicates that this method allows fast convergence to the true model and simultaneously generates inversion results with a higher accuracy. Therefore, our proposed method is very promising for practical migration velocity analysis in anisotropic media.  相似文献   

8.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data.  相似文献   

9.
An approach to calculate the accurate ray paths and traveltimes in multi-layered VTI media (transversely isotropic media with a vertical symmetry axis) is proposed. The expressions of phase velocity, group velocity and Snell’s law used for computation are all explicit and exact. The calculation of ray paths and traveltimes for a given ele-mentary wave is equivalent to that of a transmission problem which is much easier to be treated with the formulae proposed. In the section of numerical examples, the proce...  相似文献   

10.
多层垂直对称轴横向各向同性介质精确走时计算   总被引:1,自引:0,他引:1  
唐巍  李磊 《地震学报》2008,30(4):367-376
给出了计算多层垂直对称轴横向各向同性(VTI)介质精确射线路径和走时的方法,所用的体波相速度公式、群速度公式和Snell定律都是严格的显式解析公式. 任意基本波的射线路径和走时计算问题都可以转化成一个等效的透射问题,再用文中的公式来计算,具体实现方法用一个多次波和一个首波的实例给出. 最后分别用精确公式和Thomsen近似公式计算了相同模型相同基本波的走时曲线. 比较两者计算结果可发现, 近似公式反复使用会使误差积累,同时揭示了近似公式适用范围的局限性,强调了使用近似公式需要注意其适用范围的重要性.   相似文献   

11.
In multi-parameter ray-based anisotropic migration/inversion, it is essential that we have an understanding of the scattering mechanism corresponding to parameter perturbations. Because the complex nonlinearity in the anisotropic inversion problem is intractable, the construction of true-amplitude linearized migration/inversion procedures is needed and important. By using the acoustic medium assumption for transversely isotropic media with a vertical axis of symmetry and representing the anisotropy with P-wave normal moveout velocity, Thomsen parameter δ and anelliptic parameter η, we formalize the linearized inverse scattering problem for three-dimensional pseudo-acoustic equations. Deploying the single-scattering approximation and an elliptically anisotropic background introduces a new linear integral operator that connects the discontinuous perturbation parameters with the multi-shot/multi-offset P-wave scattered data. We further apply the high-frequency asymptotic Green's function and its derivatives to the integral operator, and then the scattering pattern of each perturbation parameter can be explicitly presented. By naturally establishing a connection to generalized Radon transform, the pseudo-inverse of the integral operator can be solved by the generalized Radon transform inversion. In consideration of the structure of this pseudo-inverse operator, the computational implementation is done pointwise by shooting a fan of rays from the target imaging area towards the acquisition system. Results from two-dimensional numerical tests show amplitude-preserving images with high quality.  相似文献   

12.
For pre‐stack phase‐shift migration in homogeneous isotropic media, the offset‐midpoint travel time is represented by the double‐square‐root equation. The travel time as a function of offset and midpoint resembles the shape of Cheops’ pyramid. This is also valid for transversely isotropic media with a vertical symmetry axis. In this study, we extend the offset‐midpoint travel‐time pyramid to the case of 2D transversely isotropic media with a tilted symmetry axis. The P‐wave analytical travel‐time pyramid is derived under the assumption of weak anelliptical property of the tilted transverse isotropy media. The travel‐time equation for the dip‐constrained transversely isotropic model is obtained from the depth‐domain travel‐time pyramid. The potential applications of the derived offset‐midpoint travel‐time equation include pre‐stack Kirchhoff migration, anisotropic parameter estimation, and travel‐time calculation in transversely isotropic media with a tilted symmetry axis.  相似文献   

13.
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P-mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P-mode wave by setting the axial S-wave phase velocity to zero. However, the separated pure P-wave of this approach is coupled with undesired S-wave in anisotropic media called S-wave artefacts. To eliminate the S-wave artefacts in acoustic waves for anisotropic media, we set the vertical S-wave phase velocity as a function related to propagation directions. Then, we derive a pure P-wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S-wave phase velocity. The differential form of new expression for pure P-wave is reduced to second-order by inserting the expression of S-wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P-wave equation.  相似文献   

14.
Acoustic transversely isotropic models are widely used in seismic exploration for P‐wave processing and analysis. In isotropic acoustic media only P‐wave can propagate, while in an acoustic transversely isotropic medium both P and S waves propagate. In this paper, we focus on kinematic properties of S‐wave in acoustic transversely isotropic media. We define new parameters better suited for S‐wave kinematics analysis. We also establish the travel time and relative geometrical spreading equations and analyse their properties. To illustrate the behaviour of the S‐wave in multi‐layered acoustic transversely isotropic media, we define the Dix‐type equations that are different from the ones widely used for the P‐wave propagation.  相似文献   

15.
Transversely isotropic models with a tilted symmetry axis have become standard for imaging beneath dipping shale formations and in active tectonic areas. Here, we develop a methodology of wave-equation-based image-domain tomography for acoustic tilted transversely isotropic media. We obtain the gradients of the objective function using an integral wave-equation operator based on a separable dispersion relation that takes the symmetry-axis tilt into account. In contrast to the more conventional differential solutions, the integral operator produces only the P-wavefield without shear-wave artefacts, which facilitates both imaging and velocity analysis. The model is parameterized by the P-wave zero-dip normal-moveout velocity, the Thomsen parameter δ, anellipticity coefficient η and the symmetry-axis tilt θ. Assuming that the symmetry axis is orthogonal to reflectors, we study the influence of parameter errors on energy focusing in extended (space-lag) common-image gathers. Distortions in the anellipticity coefficient η introduce weak linear defocusing regardless of reflector dip, whereas δ influences both the energy focusing and depth scale of the migrated section. These results, which are consistent with the properties of the P-wave time-domain reflection moveout in tilted transversely isotropic media, provide important insights for implementation of velocity model-building in the image-domain. Then the algorithm is tested on a modified anticline section of the BP 2007 benchmark model.  相似文献   

16.
Wave propagation in a finely layered medium is a very important topic in seismic modelling and inversion. Here we analyse non‐vertical wave propagation in a periodically layered transversely isotropic (VTI) medium and show that the evanescent (attenuation) zones in the frequency‐horizontal slowness domain result in caustics in the group velocity domain. These caustics, which may appear for both the quasi‐compressional (qP) and quasi‐shear (qSV) wave surfaces are frequency dependent but display weak dependence at low frequencies. The caustics computed for a specific frequency differ from those observed at the low‐ and high‐frequency limits. We illustrate these caustics with a few numerical examples and snapshots computed for both qP‐ and qSV‐wave types.  相似文献   

17.
18.
本文使用qP波一阶射线追踪方程(FORT)计算光滑、非均匀旋转轴对称弱各向异性介质中qP波传播的路径和走时.此FORT方程只依赖于15个弱各向异性参数,而非标准射线方程中的21个弹性参数.通常弹性参数模型是在局部坐标系中给定的,而在实际中需要的是全局坐标系下的弹性参数,因此为了解决两个坐标系下弹,性参数的变换问题,本文...  相似文献   

19.
a m¶rt;uu nua [1], ¶rt; ¶rt;uua au u a 2-D ¶rt;¶rt;, nn umn ¶rt; a muu. nua mam uu ¶rt; m nua n¶rt; ¶rt;.  相似文献   

20.
In anisotropic media, several parameters govern the propagation of the compressional waves. To correctly invert surface recorded seismic data in anisotropic media, a multi‐parameter inversion is required. However, a tradeoff between parameters exists because several models can explain the same dataset. To understand these tradeoffs, diffraction/reflection and transmission‐type sensitivity‐kernels analyses are carried out. Such analyses can help us to choose the appropriate parameterization for inversion. In tomography, the sensitivity kernels represent the effect of a parameter along the wave path between a source and a receiver. At a given illumination angle, similarities between sensitivity kernels highlight the tradeoff between the parameters. To discuss the parameterization choice in the context of finite‐frequency tomography, we compute the sensitivity kernels of the instantaneous traveltimes derived from the seismic data traces. We consider the transmission case with no encounter of an interface between a source and a receiver; with surface seismic data, this corresponds to a diving wave path. We also consider the diffraction/reflection case when the wave path is formed by two parts: one from the source to a sub‐surface point and the other from the sub‐surface point to the receiver. We illustrate the different parameter sensitivities for an acoustic transversely isotropic medium with a vertical axis of symmetry. The sensitivity kernels depend on the parameterization choice. By comparing different parameterizations, we explain why the parameterization with the normal moveout velocity, the anellipitic parameter η, and the δ parameter is attractive when we invert diving and reflected events recorded in an active surface seismic experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号