首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— We have analyzed fluorine and boron in nine tektites from all four strewn fields, and in a suite of impact glasses and target rocks from the Zhamanshin and Darwin impact craters, as well as Libyan Desert Glass and Aouelloul impact glass samples. Fluorine and boron are useful indicators for the volatilization and temperature history of tektites and impact glasses. Tektites from different strewn fields show a limited range of F and B contents and have F/B ratios near unity. Most splash-form tektites have lower average F and B contents than Muong Nong type tektites, which is similar to the relation between irghizites and zhamanshinites. The F and B contents in target rocks from the Zhamanshin and Darwin impact craters are similar to normal terrestrial sediments. Fluorine in impact glasses and tektites is more depleted compared to their (known or inferred) target rocks than is boron, which is caused by the higher volatility of F. The F/B ratios therefore decrease with increasing temperature of formation (suggesting that irghizites were formed at a higher temperature than zhamanshinites, and Muong Nong type tektites at a lower temperature than splash-form tektites). Mixing of local country rocks together with partial loss of the volatiles F and B can reproduce the F and B contents of impact glasses.  相似文献   

2.
It is shown that the enhanced abundance of siderophile elements and chromium in tektite-like glasses from the two impact craters of Zhamanshin and Aouelloul cannot be explained as a result of contamination of the country rock by meteorites nor, probably, comets. The pattern is, however, like that found in certain Australasian tektites, and in Ivory Coast tektites. It is concluded, in agreement with earlier suggestions by Campbell-Smith and Hey, that these craters were formed by the impact of large masses of tektite-like glass, of which the glasses which were studied are fragments. It follows that it is necessary, in considering an impact crater, to bear in mind that the projectile may have been a glass.  相似文献   

3.
Abstract— An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 °C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high CI abundances (0.05 wt%), indicate that the North American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with <65 wt% SiO2) from the upper Eocene clinopyroxene-bearing spherule layer in the Indian Ocean have palagonitized rims. These spherules appear to have been altered in a similar fashion to the splash form K/T boundary spherules. Thus, our data indicate that tektites and microtektites that generally contain >65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.  相似文献   

4.
Abstract— t‐Impact‐generated glasses from fallout suevite deposits at the Ries impact structure have been investigated using analytical scanning electron microscopy. Approximately 320 analyses of glass clasts were obtained. Four glass types are distinguished on the basis of composition and microtextures. Type 1 glasses correspond to the aerodynamically shaped glass bombs studied previously by many workers. Major oxide concentrations indicate the involvement of granitic rocks, amphibolites, and minor Al‐rich gneisses during melting. Type 2 glasses are chemically heterogeneous, even within individual clasts, with variations of several wt% in most of the major oxides (e.g., 57–70 wt% SiO2). This suggests incomplete mixing of: 1) mineral‐derived melts or 2) whole rock melts from a wide range of lithologies. Aluminium‐rich clinopyroxene and Fe‐Mg‐rich plagioclase quench crystals are present in type 1 and 2 glasses, respectively. Type 3 glasses contain substantial amounts of H2O (?12–17 wt%), low SiO2 (50–53 wt%), high Al2O3 (17–21 wt%), and high CaO (5–7 wt%) contents. This suggests an origin due to shock melting of part of the sedimentary cover. Type 4 glasses form a ubiquitous component of the suevites. Based on their high SiO2 content (?85–100 wt%), the only possible protolith are sandstones in the lowermost part of the sedimentary succession. Calcite forms globules within type 1 glasses, with which it develops microtextures indicative of liquid immiscibility. Unequivocal evidence also exists for liquid immiscibility between what are now montmorillonite globules and type 1, 2, and 4 glasses, indicating that montmorillonite was originally an impact melt glass. Clearly, the melt zone at the Ries must have incorporated a substantial fraction of the sedimentary cover, as well as the underlying crystalline basement rocks. Impact melts were derived from different target lithologies and these separate disaggregated melts did not substantially mix in most cases (type 2, 3, and 4 glasses and carbonate melts).  相似文献   

5.
Abstract— The origin of tektites has been obscure because of the following dilemma. The application of physical principles to the data available on tektites points strongly to origin from one or more lunar volcanoes; but few glasses of tektite composition have hitherto been reported from the lunar samples. Instead, the lunar silicic glasses consist chiefly of a material very rich in K2O and poor in MgO. The ratio of K2O/MgO is higher in these glasses than in any tektites reported. The solution of the dilemma seems to come from the study of some recently discovered terrestrial deposits of tektite glass with high values of K2O/MgO at the Cretaceous-Tertiary boundary. These glasses are found to be very vulnerable to crystallization into sandine or to alteration to smectite. These end products are known and are more abundant than any terrestrial deposits of tektite glass. It seems possible that, in fact, the moon produces tektite glass, mostly of the high K2O-low MgO type; but on Earth these deposits are destroyed. The much less abundant deposits with lower K and higher Mg are observed because they survive. Other objections to the lunar origin hypothesis appear to be answerable.  相似文献   

6.
Two irghizites, three zhamanshinites and one sample each of lechatelierite, vein-quartz, Palaeogene silty clay and Palaeogene quartzite were analyzed using neutron activation analysis. A silicate analysis of the Palaeogene silty clay has also been performed, as well as an incomplete analysis of the Palaeogene quartzite from the Zhamanshin impact crater. The REE abundances of irghizites resemble those of sedimentary rocks. On the Köhler and Raaz diagram all projection points of irghizites lie inside the field of tektites, and indicate that they were derived from terrestrial sedimentary rocks. The Zhamanshin impact glasses may be divided into three types: (a) silica-rich zhamanshinites (x?SiO2 = 73.89%), (b) zhamanshinites (x?SiO2 = 54.34%), and (c) silica-poor zhamanshinites (x?SiO2 = 39.64%). These are also characterized by varying proportions of alkalis and Al. Mn and Ca contents. Irghizites and silica-rich zhamanshinites display a depletion of Eu. Zhamanshinites do not show this Eu depletion. Partial melting is assumed to be an important process in the origin of zhamanshinites.  相似文献   

7.
Abstract— We report Sr-Nd isotope parameters, rare earth element (REE), and major element data for isolated findings of tektite-like objects from western Siberia (urengoites, South-Ural glass), as well as for two indochinites. The latter were recovered in Vietnam and their overall geochemical characteristics equal those of other tektites from the indochinite subgroup of the Australasian strewn field. The three urengoites (~24 Ma) are extremely silica-rich (89 to 96 wt% SiC2), and their REE abundances vary between 45 and 76 ppm. With LaN/YbN ranging from 7.6 to 10.4 and EuN/EU* between 0.69 and 0.75, their REE distribution patterns match that of average upper crust. The urengoites have present-day ?Sr of +155 to +174 and ?Nd ranging from ?18 to ?23. Their model ages in million years are: TSruR = 1200 up to 4060 and TNdcHUR = 1570 up to 2070. Data points for the urengoites plot colinearly in the Rb-Sr evolution diagram. The age corresponding to the slope is 183 ± 30 Ma (2s?), which is indistinguishable from the intercept age of 211 Ma in the TSrUR vs. l/fRb diagram. Rubidium-strontium and Sm-Nd systematics of the urengoites indicate a heterogeneous precursor material, derived from Paleoproterozoic continental crust, which underwent Rb/Sr fractionation and partial Sr isotope homogenization in Jurassic times. Any relation between the urengoites and the Haughton impact crater, having within 2s? errors an identical age, can be excluded on the basis of isotope relationships and geochemical data. The only known South-Ural glass (~6.2 Ma) is characterized by intermediate SiO2 (65 wt%), high Al2O3 (14 wt%) and CaO (12 wt%), and low FeOTOT (0.4 wt%) contents. This unique tektite-like object contains 110 ppm REE displaying a steeply negative C1 normalized distribution with LaN/YbN of 17, and EuN/Eu1 of 0.71. The Rb abundance (10 ppm) and Rb/Sr ratio are low, and combined with a “crustal” 87Sr/86Sr ratio of 0.722, yielding an unrealistic TSruR age of 2.5 Ga. The Rb-Sr systematics imply a rather recent parent/daughter element decoupling. The TNdCHUR age of the South-Ural glass is ~1690 Ma. Geochemical data suggest that urengoites and the South-Ural glass belong to two discrete groups of tektites, whose source craters remain to be discovered.  相似文献   

8.
Abstract— We studied the infrared reflectance (IR), Raman, and cathodoluminescence (CL) spectroscopic signatures and scanning electron microscope‐cathodoluminescence (SEM‐CL) images of three different types of impact glasses: Aouelloul impact glass, a Muong Nong‐type tektite, and Libyan desert glass. Both backscattered electron (BSE) and CL images of the Muong Nong‐type tektite are featureless; the BSE image of the Libyan desert glass shows only weak brightness contrasts. For the Aouelloul glass, both BSE and CL images show distinct brightness contrast, and the CL images for the Libyan desert glass show spectacular flow textures that are not visible in any other microscopic method. Compositional data show that the SiO2 composition is relatively higher and the Al2O3 content is lower in the CL‐bright areas than in the CL‐dark regions. The different appearance of the three glass types in the CL images indicates different peak temperatures during glass formation: the tektite was subjected to the highest temperature, and the Aouelloul impact glass experienced a relatively low formation temperature, while the Libyan desert glass preserves a flow texture that is only visible in the CL images, indicating a medium temperature. All IR reflectance spectra show a major band at around 1040 to 1110 cm?1 (antisymmetric stretching of SiO4 tetrahedra), with minor peaks between 745 and 769 cm?1 (Si‐O‐Si angle deformation). Broad bands at 491 and 821 cm?1 in the Raman spectra in all samples are most likely related to diaplectic glass remnants, indicating early shock amorphization followed by thermal amorphization. The combination of these spectroscopic methods allows us to deduce information about the peak formation temperature of the glass, and the CL images, in particular, show glass flow textures that are not preserved in other more conventional petrographic images.  相似文献   

9.
Abstract— During Leg 150 of the Ocean Drilling Project (ODP), two sites (903C and 904A) were cored that have sediments of the same biostratigraphic age as the upper Eocene tektite-bearing ejecta layer at Deep Sea Drilling Project (DSDP) Site 612. Core 45X from ODP Site 904A (~4 km north of Site 612) contains a 5 cm thick tektite-bearing ejecta layer, and Core 56 from Site 903C (~8 km north-northwest of Site 904) contains a 2 cm thick layer of impact ejecta without any tektite or impact glass. Shocked quartz and feldspar grains, with multiple sets of planar deformation features (PDFs), and abundant coesite-bearing grains are present at both sites. The major oxide contents, trace element compositions, and rare earth element (REE) patterns of the Site 904 tektites are similar to those of the Site 612 tektites and to North American tektites (especially bediasites). The ?Sr and ?Nd values for one composite tektite sample from Site 904 fall within the range previously obtained for the Site 612 tektites, which defines a linear trend that, if extrapolated, would intersect the values obtained for North American tektites. The water contents of eight tektite fragments from Site 904 range from 0.017 to 0.098 wt%, and, thus, are somewhat higher than is typical for tektites. The heavy mineral assemblages of the 63–125 μm size fractions from the ejecta layers at Sites 612, 903, and 904 are all similar. Therefore, we conclude that the ejecta layer at all three sites is from the same impact event and that the tektites at Sites 904 and 612 belong to the North American tektite strewn field. Clinopyroxene-bearing (cpx) spherules occur below, or in the lower part of, the main ejecta layer at all three sites. At all three sites, the cpx spherules have been partly or completely replaced with pyrite that preserved the original crystalline textures. Site 612, 903, and 904 cpx spherules are similar to those found in the Caribbean Sea, Gulf of Mexico, central equatorial Pacific, western equatorial Pacific, and eastern Indian Ocean. The cpx event appears to have preceded the North American tektite event by 10–15 ka or less. The fining-upward sequence at all three sites and concentration of the denser, unmelted impact ejecta at the top of the tektite layer at Sites 612 and 904 suggest that the tektite-bearing ejecta layers are not the result of downslope redeposition and that the unmelted ejecta landed after the glass. Geographic variations in thickness of the tektite-bearing ejecta layer, the lack of carbonate clasts in the ejecta layer, and the low CaO content of the tektite glass suggest that the ejecta (including the tektite glass) were derived from the Chesapeake Bay structure rather than from the Toms Canyon structure. A sharp decline in microfossil abundances suggests that local environmental changes caused by the impact may have had adverse effects on benthic foraminifera, radiolaria, sponges, and fish as well as the planktic foraminifera.  相似文献   

10.
Abstract— One hundred and thirteen Australasian tektites from Vietnam (Hanoi, Vinh, Dalat, and Saigon areas) were analyzed for their major and trace element contents. The tektites are either of splash form or Muong Nong‐type. The splash‐form tektites have SiO2 contents ranging from 69.7 to 76.8 wt%, whereas Muong Nong‐type tektites, which are considerably larger than splash‐form tektites and have a blocky and chunky appearance, have slightly higher silica contents in the range of 74–81 wt%. Major‐element relationships, such as FeO versus major oxides, Na2O versus K2O, and oxide ratio plots, were used to distinguish the different groups of the tektites. In addition, correlation coefficients have been calculated for each tektite group of this study. Many chemical similarities are noted between Hanoi and Vinh tektites from the north of Vietnam, except that the Hanoi tektites contain higher contents of CaO than Vinh; the higher content of CaO might be due to some carbonate parent material. Both Dalat and Saigon tektites have nearly similar composition, whereas the bulk chemistries of the tektites from Hanoi and Vinh appear different from those of Saigon and Dalat. There are differences, especially in the lower CaO and Na2O and higher MgO, FeO, for the tektites of Dalat and Saigon in comparison to that of Hanoi tektites. Furthermore, the Dalat and Saigon tektites show enrichments by factors of 3 and 2 for the Ni and Cr contents, respectively, compared to those of Hanoi and Vinh. The difference in chemistry between the North Vietnam tektites (Hanoi, Vinh) to that of South Vietnam tektites (Saigon, Dalat) of this study indicate that the parent material was heterogeneous and possibly mixing between different source rocks took place. Muong Nong‐type tektites are enriched in the volatile elements such as Br, Zn, As, and Sb compared to the average splash‐form tektites of this study. The chemical compositions of the average splash‐form and Muong Nong‐type tektites of this study closely resemble published data for average splash‐form and Muong Nong‐type indochinites, indicating that they have the same source. The trace element ratios Ba/Rb (2.7), Th/U (5.2), Th/Sc (1.3), Th/Sm (2.2), and the rare earth element (REE) abundances of this study show close similarities to those of average upper continental crust.  相似文献   

11.
The origin of the Rio Cuarto crater field, Argentina has been widely debated since the early 1990s when it was first brought to public attention. In a binary on–off sense, however, the craters are either of a terrestrial origin or they formed via a large asteroid impact. While there are distinct arguments in favour of the former option being the correct interpretation, it is the latter possibility that is principally investigated here, and five distinct impact formation models are described. Of the impact scenarios it is found that the most workable model, although based upon a set of fine-tuned initial conditions, is that in which a large, 100–150-m initial diameter asteroid, entered Earth’s atmosphere on a shallow angle path that resulted in temporary capture. In this specific situation a multiple-thousand kilometer long flight path enables the asteroid to survive atmospheric passage, without suffering significant fragmentation, and to impact the ground as a largely coherent mass. Although the odds against such an impact occurring are extremely small, the crater field may nonetheless be interpreted as having potentially formed via a very low-angle, smaller than 5° to the horizon, impact with a ground contact speed of order 5 km/s. Under this scenario, as originally suggested by Schultz and Lianza (Nature 355:234, 1992), the largest of the craters (crater A) in the Rio Cuarto structure was produced in the initial ground impact, and the additional, smaller craters are interpreted as being formed through the down-range transport of decapitated impactor material and crater A ejecta.  相似文献   

12.
Abstract— Electron microprobe and laser ablation, inductively‐coupled plasma mass spectrometer analyses of 24 georgiaites show that these tektites are all Si‐rich (79–83 wt% SiO2) glasses with variable major and trace element abundances (e.g., FeO varies from 2.1 to 3.7 wt%). Glass compositions are similar to but not identical with average upper continental crust. For example, georgiaites are light rare earth element enriched with small negative Eu anomalies (Eu/Eu*=0.73‐0.86) and La‐Th‐Sc systematics are intermediate between that of Archean and post‐Archean continental crust. When the georgiaite data are placed in the context of data for all North American tektites, triangular arrays appear on some oxide‐oxide plots (e.g., FeO‐MgO). Large variations in refractory element abundances and ratios compared to the variation in SiO2 favors mixing over volatilization as a cause of the compositional variation. If all the tektites formed as a result of a single impact, then triangular arrays in oxide‐oxide variation diagrams require at least three source components. These components include a Si‐rich material, probably a quartz‐rich sand that was predominant in the formation of georgiaites. Two relatively silica‐poor and Fe‐rich components have compositional characteristics similar to shales and greywackes. The La‐Th‐Sc systematics of the georgiaites and most other North American tektites are distinctive and could potentially be used to link the tektites to Eocene sediments at the Chesapeake Bay impact structure.  相似文献   

13.
Ralph B. Baldwin 《Icarus》1981,45(3):554-563
From estimates of the total masses of tektites in three strewnfields, calculations by Orphal et al. (1980) of the amount of melt that could be ejected from impact craters, and equations relating kinetic energy of impact to crater diameter, it is possible to calculate minimum diameters of lunar craters capable of ejecting the liquid masses that could have formed the various tektite strewnfields. No lunar craters of the requisite sizes have been found that are young enough to correlate with the dates of formations of the strewnfields and it seems clear that the Moon must be eliminated as a source of tektites on the Earth. It is concluded that the associations of the Ivory Coast tektites with the Bosumtwi crater and the moldavites with the Rieskessel are real and the tektites are of terrestrial origin. It follows that if the Ivory Coast tektites came from the 10.5-km-wide Bosumtwi crater, the larger masses in the Australasian and North American strewnfields came from craters 17 km in diameter and between 33 and 65 km in diameter, respectively. No crater has yet been proven to be the parent of the Australisian tektites. The large crater that formed the North American tektites may not yet have been found, although the Mistastin Lake Crater may eventually be proven to be the source.  相似文献   

14.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

15.
Abstract— The howardite‐eucrite‐diogenite (HED) clan is a group of meteorites that probably originate from the asteroid Vesta. Some of them are complex breccias that contain impact glasses whose compositions mirror that of their source regions. Some K‐rich impact glasses (up to 2 wt% K2O) suggest that in addition to basalts and ultramafic cumulates, K‐rich rocks are exposed on Vesta's surface. One K‐rich glass (up to 6 wt% K2O), with a felsic composition, provides the first evidence of highly differentiated K‐rich rocks on a large asteroid. They can be compared to the rare lunar granites and suggest that magmas generated in a large asteroid are more diverse than previously thought.  相似文献   

16.
Abstract— The distribution and petrography of surficial suevite breccias of the Ries impact crater in Southern Germany are reviewed, and the morphology, petrography and chemical composition of impact glasses in suevite breccias and their postdepositional devitrification is synthesized. Origin and thermal history of suevite breccia and suevite glasses are inferred from these data and from recent results of cooling and crystallization experiments with suevite glass melts under controlled conditions. In a montmorillonitic groundmass, the suevite breccia contains pieces of glass, up to some decimeters in size, and crystalline rock clasts of all stages of shock metamorphism. The glass particles originated in impact melt of basement gneisses and cooled by adiabatic pressure release from ~80 GPa to atmospheric pressure during ejection from the crater. They were deposited on the ground together with the other suevite components at a temperature of ~750 °C. Fractured glass pieces in the breccia show that during deposition of the suevite the temperature was below the temperature at which undercooled melt transforms to rigid glass. The suevite cooled after deposition mainly by convection of heat by emanating gases and vapors. In chilled layers at the base and at the top of suevite deposits, the glasses are preserved in vitreous state. Between these zones, the glasses were devitrified, yet crystallization of pyroxene, plagioclase and magnetite took place below the glass-transformation temperature. Annealing experiments show that this unusual devitrification below the transformation temperature can be explained by the impact origin of suevite glasses. Due to rapid adiabatic cooling on decompression, the glasses were oversaturated with water and internally strained. Under these conditions, devitrification, especially the formation of plagioclase, was possible at temperatures below the transformation range. The origin from adiabatically cooled impact melt of deep-seated rocks distinguishes water-bearing suevite glasses from the Ries-derived, water-free moldavite tektites, which are interpreted as condensates of vaporized, surficial sediments (Engelhardt et al., 1987).  相似文献   

17.
Abstract— Tektites are natural glasses formed from terrestrial material that was melted and displaced by the impact of an extraterrestrial body. The surface and near-surface compositions of tektite glass results from fractionation during impact and ejection, and/or postsolidification weathering. The first goal of this study was to characterise the surface and near-surface (in the order of tens of angstroms) chemical composition of two tektites by x-ray photoelectron spectroscopy (XPS), and to estimate the importance of weathering vs. fractionation during flying. In order to separate the chemical modification due to weathering from that due to fractionation during ballistic flight, we studied two samples from the Australasian tektite strewn field. One of them was collected in a hot desert area (Nullarbor Plain, Australia) and the other, in a humid climate (Thailand). Our study reveals the presence of well-developed leached layers in both tektites. In the Australian tektite, Si is depleted in the topmost layers (a few tens of angstroms). A more complex chemical zoning is defined in the tektite from Thailand. These leached layers are comparable to those observed in weathered glasses, and therefore we conclude that weathering is responsible for the chemical composition of the surface and near-surface compositions. The second goal was to investigate the chemical environment of O, N and C in the glass. The O peak was resolved into two bridging O components (Si-O-Si and Al-O-Si) that are comparable to O environments in artificial glasses. The binding energy of the C1s electron is typical for C-C and C-H bonds in hydrocarbons; minor organic acid components are also present. Nitrogen is only observed on the surface of the Thailand tektite. The binding energy of N1s is comparable to that of ammonia, and the surface enrichment in N is interpreted as due to sorption related to interactions between glass and fluid buffered by the organic material in the soil.  相似文献   

18.
The circa 14 km diameter Pantasma circular structure in Oligocene volcanic rocks in Nicaragua is here studied for the first time to understand its origin. Geomorphology, field mapping, and petrographic and geochemical investigations all are consistent with an impact origin for the Pantasma structure. Observations supporting an impact origin include outward‐dipping volcanic flows, the presence of former melt‐bearing polymict breccia, impact glass (with lechatelierite and low H2O, <300 ppm), and also a possible ejecta layer containing Paleozoic rocks which originated from hundreds of meters below the surface. Diagnostic evidence for impact is provided by detection in impact glass of the former presence of reidite in granular zircon as well as coesite, and extraterrestrial ε54Cr value in polymict breccia. Two 40Ar/39Ar plateau ages with a combined weighted mean age of 815 ± 11 ka (2 σ; P = 0.17) were obtained on impact glass. This age is consistent with geomorphological data and erosion modeling, which all suggest a rather young crater. Pantasma is only the fourth exposed crater >10 km found in the Americas south of N30 latitude, and provides further evidence that a significant number of impact craters may remain to be discovered in Central and South America.  相似文献   

19.
Abstract– Impact events are a significant surface‐modifying process on solar system objects lacking frequent resurfacing by atmospheric or igneous processes. To better explore the effects of impacts on surface materials, we measured the water and trace element compositions of tektites from Da Lat, Vietnam. Fourier transform infrared spectroscopy was used for water measurements and laser ablation inductively coupled plasma mass spectrometry was used for trace element measurements. Consistent with previous investigations of tektites, we found that the samples are depleted in volatile metals (e.g., Zn, Pb) as well as in water compared with the average continental crust, although water contents are still extremely high for rocks melted at atmospheric pressure. While Zn and Pb concentrations are linearly correlated with each other, there is no correlation between H2O and Zn or Pb contents. Combined with water contents of other tektites in the Australasian strewn field, our results demonstrate that the source impact occurred at a wet site in or off the coast of the Indochina peninsula.  相似文献   

20.
Abstract— Darwin glass formed by impact melting, probably during excavation of the 1.2 km diameter Darwin crater, Tasmania, Australia. The glass was ejected up to 20 km from the source crater and forms a strewn field of >400 km2. There is at least 11,250 m3of glass in the strewn field and relative to the size of the crater this is the most abundant ejected impact glass on Earth. The glass population can be subdivided on the basis of shape (74% irregular, 20% ropy, 0.5% spheroid, 6% droplet, and 0.7% elongate) and color (53% dark green, 31% light green, 11% black, and 5% white). The white glasses contain up to 92 wt% SiO2 and are formed from melting of quartzite. Black glasses contain a minimum of 76 wt% SiO2 and formed from melting of shale. Systematic variations in the proportion of glasses falling into each of the color and shape classes relative to distance from the crater show: 1) a decrease in glass abundance away from the crater; 2) the largest fragments of glass are found closest to the crater; 3) small fragments (<2 g) dominate finds close to the crater; 4) the proportion of white glass is greatest closest to the crater; 5) the proportion of black glass increases with distance from the crater and 6) the proportion of splashform glasses increases with distance from the crater. These distribution trends can only be explained by the molten glass having been ballistically ejected from Darwin crater during impact and are related to 1) the depth of excavation from the target rock stratigraphy and/or 2) viscosity contrasts between the high and low SiO2 melt. The high abundance and wide distribution of ejected melt is attributed to a volatile charged target stratigraphy produced by surface swamps that are indicated by the paleoclimate record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号