首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正> 本文涉及的中上元古宇包括下寒武统之下,吕梁运动面(即相当于长城系底面)以上的一套地层。中、晚元古宙的沉积在我国东部分布较广,在不同的小区内,在沉积建造和地层序列上常显示出各自的特色。可按沉积时限、地壳构造活动性、沉积物特征和生物群面貌将东部中上元古宇分为四种沉积类型,简称蓟县型、旅大型、扬子型和江南型,名称来源于代表性剖面所在地或沉积区的地名。  相似文献   

2.
This study utilizes three major data sources: distribution of geological units; density, type, age and distribution of mineral deposits; and elemental analyses from regional geochemical stream sediment surveys to define parameters that ‘characterize’ tectonic terranes in northern British Columbia. A similar approach could be applied anywhere in the Canadian Cordillera.This area, NTS map sheets 104N, 104O and 104P along the British Columbia-Yukon border, forms a transect through allochthonous terranes into North American rocks. These are: the allochthonous island-arc Stikine, oceanic Cache Creek, cataclastic Yukon/Tanana, and island-arc Quensel terranes, the pericratonic Dorsey terrane; the parautochthonous oceanic Sylvester allochthon; and the autochthonous miogeoclinal North American Cassiar terrane. Plutonic rocks of Jurassic-Cretaceous to Tertiary age intrude all terranes.Data sources used in the study are geological base maps and reports, the Ministry of Energy Mines and Petroleum Resources' mineral deposit database (MINFILE) and analytical data from the National Regional Geochemical Survey stream sediment and water sampling program.Geological maps were compiled from various sources and plotted to act as bases for geochemical and mineral deposit overlays for analysis and interpretation.Geochemical samples were separated into background and anomalous populations and compared according to their source terranes. We found that mean concentrations from background sample populations for some elements are statistically distinctive for different terranes. Unfortunately, elemental correlation coefficients for the terranes are similar so cannot be used to characterize each terrane.Data on mineral deposits and occurrences were compiled from minfile and other sources. Particular attention was paid to deposits with histories of production or significant reported reserves. Deposits were sorted by type and commodity to produce synoptic metallogenic maps.The combined data from geological, geochemical and mineral deposit databases form a strong tool for interpreting and predicting patterns of mineralization.  相似文献   

3.
This paper summarizes the latest advances in research on the terrane tectonics of China.The terranes of China distributed around various plates may be divided into four terrane belts of different ages and sizes.i.e.,the East China,Northwest China,Southwest China and Qilling-Dabie terrane belts.Among them,the East China belt may be subdivided into three composite terrane groups;each terrane proup is composed of several terranes that were formed roughly at the same time and have distince geologic histories.The accretion of China‘s terranes involver three types;the collision type,the flake-thrusting type,and the docking type.The results of the lates study in the five widening fields and some advances in the methods of research on the terrane tectonics in China are presented in the present paper.  相似文献   

4.
《Gondwana Research》2001,4(3):319-328
Examination of Landsat TM images, reconnaissance field traverses and the published geological maps from the Eastern Ghats Mobile Belt (EGMB), India, reveal a network of major ductile shear zones both within and at the margins. These shear zones are characterized by mylonitic foliation, grain size reduction, metamorphic retrogression, stretching lineations and distinct signatures of alkaline, anorthositic and granitic magmatism. These shear zones divide the EGMB into distinct terranes, which are heterogeneously deformed with extensive tracts of foliated mylonitic gneisses and ultramylonites. The main gneissic foliation in all the terranes is refolded in near non-coaxial manner generally about the axis subparallel to the elongation of the terrane.Structural history in each terrane is distinct in the orientation of stretching lineations, attitude of gneissosity and early fold axial planes, lithological assemblages and available geochronological data. It is possible to recognise nine large terranes within the EGMB and the characteristics of each terrane have been described. The terrane distribution in the EGMB could well fit a thrust tectonic, allochthonous model of amalgamation and accretion. Different terranes could be different thrust nappes or allochthonous tectonic sheets representing tectono-stratigraphic terranes.  相似文献   

5.
Comparative data on tectono-stratigraphic complexes of the Ultra-Tamba terrane (Inner Zone of Japan) and upper structural level of the Samarka terrane in the Jurassic accretionary prism of Sikhote Alin are considered. Structural, lithological, petrographic data and age constraints characterizing rock associations of the terranes show that the latter are similar to a great extent, and consequently the Ultra-Tamba terrane can be regarded as an element of the Tamba-Mino-Ashio accretionary prism of the Jurassic but not Permian age, as it was thought earlier. The considered data substantiate confident structural correlation of both fragments of the Jurassic prism and of two regions in general.  相似文献   

6.
The Mino tectono-stratigraphic terrane, central Japan, underlain by Permian to Jurassic sedimentary and volcanic rocks of various origins, was formed through accretion processes associated with the Mesozoic sea-floor spreading. This conclusion has been reached mainly from the following reasoning:
1. (1) the entire boundary of this terrane is defined by tectonic belts with high-pressure metamorphic rocks and serpentinized ultramafic rocks,
2. (2) the chemistry and petrology of the Permian greenstones demonstrate their affinity with abyssal tholeiitic and alkalic basalts,
3. (3) the widespread, but chaotic, occurrence of Permian greenstones, Triassic cherts, and Jurassic siliceous shales in the younger Jurassic clastic rocks of this terrane suggests extensive post-depositional mixing of strata,
4. (4) the sedimentology of the Jurassic sandstones strongly suggests that they are turbidity-current deposits supplied from cratonic lands,
5. (5) the South-Pacific type fossil assemblage in the Mino terrane shows strong contrast with the North-Pacific type fossil assemblage of the adjacent terranes,
6. (6) the paleomagnetism of the Permian and Jurassic greenstones, the Triassic cherts, and the Jurassic siliceous shales implies long-distance northward drift in Cretaceous time of these rocks from their original low latitudinal regions.
Along with this northward migration, the Mino terrane was accreted with extensive internal deformation to northeast Asia including the present Hida terrane. Recent accumulation of paleomagnetic and paleontologic data in the Pacific peripheral regions appears to support the existence of many allochthonous terranes which migrated from the equatorial regions. The Mino terane may be regarded as one example of these Circum-Pacific allochthons.  相似文献   

7.
湖南省构造地层地体的划分及其与有色多金属成矿的关系   总被引:1,自引:0,他引:1  
文章从地体的形成与拼贴方面讨论了湖南省5个构造地层地体的划分,根据各地体的成矿特征不同,按元素组合归纳出五大有色多金属成矿系列,引用"液态矿源层"概念解释大型、超大型矿床的巨量物质来源,认为地体边界断裂带和地体内深大断裂控制了有色金属大型、超大型矿床与矿集区的分布.  相似文献   

8.
大别山前寒武纪变质地体基本组成   总被引:5,自引:0,他引:5  
桑隆康  游振东 《地质论评》1994,40(3):265-273
本文以新城-圻春断裂为界将大别山前寒武纪变质地体划分为华北陆块南缘和场子陆块北缘两个次级变质地体,两个次级地体不仅在地球物理,构造变形方面明显不同,而且在物质成分上有显著差异,它们有各自独立的变质地层系统,遭受了不同类型的变质作用,有完全不同的岩浆活动图象,上述差异均可指示华北,扬子两古陆碰掸对接时扬子陆块北缘向北俯冲至华北陆块南缘之下,这可能包括两次合作用,从元古代开始至中生代最终结束的长期复杂  相似文献   

9.
Indochina is an amalgamation of the Sino–Vietnam, Viet–Lao, Uttaradit, and Khorat–Kontum terranes. Mineral deposits are distributed as follows: In the Sino–Vietnam terranes, gold, iron, copper, lead–zinc, ruby, pagodite, and Permian bauxite deposits are known. Gold, tin, tungsten, phosphate, lead–zinc, skarn type iron, rare-earth minerals, pagodite, and graphite deposits are found in the Viet–Lao terrane. Gold, Tertiary bauxite, lead–zinc, copper, ruby, sapphire, tin, pagodite, phosphate, potash, and halite deposits are present in the Khorat–Kontum terrane, whereas chromium, gold, tin, and tungsten deposits occur in the Uttaradit terrane. The tectonic evolution of these terranes provides information on the distribution and origin of these deposits.  相似文献   

10.
斜方角闪石组合的变质压力类型   总被引:1,自引:0,他引:1  
斜方角闪石组合是前寒武纪变质岩系中的一种特殊的岩石类型,以富Mg、Al,贫Ca、K为特征,矿物组成为堇青石、斜方角闪石和富铝矿物如Al2SiO5、十字石、石榴石、斜长石、云母类和单斜角闪石类。其分布遍及欧亚及大洋洲各地的古老岩系中,在许多产地与硫化物矿床有密切关系。按其变质条件可以分为低压和高压两种类型:低压型以堇青石-直闪石-镁铁闪石组合为特征;高压型以蓝晶石、铝直闪石组合为特征,有时有石榴石。堇青石、十字石构成围绕蓝晶石周围的冠状体,成为变质地体经历近绝热抬升的极好证据。本文论述其特征矿物组合、结构的演化、所涉及的变质反应及其形成的构造环境。  相似文献   

11.
Sandstones of the juxtaposed and partially coeval quartzofeldspathic Torlesse terrane and volcanogenic Waipapa terrane of North Island, New Zealand, are generally described as having been derived from silicic continental arc and evolved intermediate volcano-plutonic arc sources, respectively. Modal and chemical compositions of the two terranes differ slightly as a result. From textural considerations, their single-grain (unitary) detrital mineral populations are inferred to have been derived largely from the plutonic components in their sources. Intensive microscopic and electron microprobe study of two representative samples shows that the unitary detrital mineral assemblages in the two terranes are virtually identical, comprising quartz, plagioclase, K-feldspar, white mica, epidote, titanite, pumpellyite, ilmenite, rutile, tourmaline, zircon, and apatite. Detrital chlorite, garnet, and graphite also occur in the Torlesse sample, whereas amphibole, clinopyroxene, and prehnite occur in the Waipapa sample. Authigenic mineral assemblages are also similar, consisting of quartz, albite, chlorite, phengitic mica, epidote, titanite, pumpellyite, pyrite, and calcite. Stilpnomelane and pyrrhotite also occur in the Torlesse sample, and prehnite in the Waipapa specimen. These assemblages define upper prehnite-pumpellyite to lower pumpellyite-actinolite facies conditions (Torlesse) and lower prehnite-pumpellyite facies metamorphism (Waipapa). By comparison with published compositional data for minerals from plutonic, metamorphic, and volcanic rocks, electron microprobe analyses of individual minerals confirm that the unitary detrital grains in both terranes were largely derived from calc-alkaline S-type granitoid plutonic rocks. Contrasts in mineral compositions between the two terranes show that the Torlesse unitary mineral detritus was derived almost entirely from granodiorite, whereas the Waipapa grains originated from a mixed diorite, monzonite, and granodiorite plutonic component in their source. In neither terrane was detritus derived from granite in the strict sense. Although the plutonic components in their sources are lithologically similar, the compositional contrasts seen indicate that they were not coeval or spatial components of the same terrane. Detailed electron microprobe analysis of unitary detrital phases in low-grade metasedimentary rocks thus enables identification of specific source terrane lithotypes, and hence is a valuable complement to existing petrographic, modal, and chemical approaches that define more generalized provenances.  相似文献   

12.
The use of mineral deposit density regression models to estimate the number of undiscovered deposits is gaining acceptance in mineral resources assessments. The deposit density regression models currently in use are based on well-established power law relationships between deposit density (deposits/km2) and the areal extent of the host rocks in well explored regions (control areas) worldwide. Although these generalized or global deposit density models can generate guideline estimates that are useful at the terrane scale, locally-derived terrane-based deposit density regression models may potentially yield more relevant estimates at the terrane scale. Using 12 selected komatiite-defined control areas in the Kalgoorlie Terrane, Western Australia, we found that the size (km2) of the control areas had power law relationships with (i) nickel sulphide deposit density, and (ii) nickel endowment density (nickel metal/km2). Regression analyses showed that both power law relationships are statistically significant at the 5% level. This suggests that nickel sulphide deposit and endowment density models could be used to estimate the number of undiscovered nickel sulphide deposits and amount of nickel metal endowment in less explored komatiites in the Kalgoorlie Terrane. This study shows that global geological relationships can be viably downscaled onto local geological terranes thereby supporting the hypothesis that the processes of mineral deposit formation and preservation are scale-independent and self-similar.  相似文献   

13.
Prior to 1970 grey gneiss complexes were interpreted as partially-melted sedimentary sequences. Once it was recognised from the Nuuk region that they comprised calc-alkaline igneous complexes, it was understood that such complexes world-wide were dominated by TTG (trondhjemite-tonalite-granodiorite) initially found to have juvenile Sr, Nd and, subsequently, Hf isotopic signatures. Between 1970 and 1985 the Nuuk region gneiss complex was interpreted by the non-uniformitarian ‘super-event’ model of crust formation which proposed occasional but extensive crust formation, with craton-wide correlation of granulite facies metamorphism and deformational phases. The igneous rocks formed in a late- Meso- to early Neoarchaean super-event engulfed crust formed in an Eoarchaean super-event. Mapping and reinterpretation at Færingehavn showed there are three TTG gneiss domains, each with different early accretionary, metamorphic and tectonic histories, separated by folded meta-mylonites. This established the key feature of the tectono-stratigraphic terrane model; that each terrane has an early intra-terrane history of crust formation, deformation and metamorphism, upon which is superimposed a later deformation and metamorphic history common to several terranes after they were juxtaposed. Remapping and >250 U-Pb zircon age determinations have refined the geological evolution of the entire Nuuk region, and has confirmed at least four main crust formation events and two collisional orogenies with associated transient high pressure metamorphism within clockwise P-T-t loops. Via independent corroborative studies the tectono-stratigraphic terrane model has been accepted for the Nuuk region and, through the discovery of similar relations across other gneiss complexes, its mode of evolution is found to be applicable to Archaean high-grade gneiss complexes worldwide. The TTG and mafic components that dominate each terrane have geochemistry interpreted to indicate subduction-related magmatism at convergent plate boundaries. Each terrane is thus dominated by juvenile additions to the crust. Intra-terrane sedimentary rocks show near unimodal age distributions in contrast to those near the boundaries which are more diverse and complex. The combined geochronological, metamorphic and structural evidence of convergence of these terranes leading to collisional orogeny, this indicates that plate tectonic processes operated throughout the Archaean.  相似文献   

14.
New SHRIMP U–Pb zircon geochronology and fieldwork integrated with reappraisal of earlier mapping demonstrates that the so-called ‘southern region’ of the mainland Lewisian Gneiss Complex comprises a package of distinct tectono-stratigraphic units. From south to north these are the Rona (3135–2889 Ma), Ialltaig (c. 2000 Ma) and Gairloch (ca. 2200 Ma) terranes. These terranes were metamorphosed and deformed separately until ca. 1670 Ma by which time they had been juxtaposed and were integral with terranes to the north. The northern boundary of the Palaeoproterozoic Gairloch terrane is a shear zone, north of which is the Archaean Gruinard terrane with 2860–2800 Ma protoliths and ca. 2730 Ma granulite facies metamorphism. In contrast, south of the Gairloch terrane, the Archaean gneisses of the Rona terrane have older protolith ages, underwent an anatectic event at ca. 2950 Ma and show no evidence of 2730 Ma granulite facies metamorphism. In current structural interpretations the Gruinard terrane forms a structural klippe over the intervening Gairloch terrane. However, the Rona and Gruinard terranes cannot be equivalent on age grounds, and are interpreted as unrelated different entities. Contained within the southern margin of the Gairloch terrane is the Ialltaig terrane, shown here to comprise an exotic slice of granulite facies Palaeoproterozoic crust, rather than Archaean basement as previously thought. The ca. 1877 Ma granulite facies metamorphism of the Ialltaig terrane is the youngest event that is unique to a single terrane in the mainland Complex, making it an upper estimate for the timing of amalgamation with surrounding tectonic units. U–Pb titanite ages of 1670 ± 12 Ma and ca. 1660 Ma for low-strain zones at Diabaig are interpreted to be cooling through the titanite closure temperature after the amphibolite facies reworking of these southern terranes and the southern margin of the Gruinard Terrane. These new data have implications for the tectonic setting of the mainland in relation to the Outer Hebrides and in the wider evolution of the basement in the North Atlantic.  相似文献   

15.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

16.
An important role of the early Neoproterozoic juvenile crustal growth in the formation of the Khangai group of Precambrian terranes in the Central Asian Orogenic Belt was demonstrated by the example of the Holbo Nur Zone of the Songin Block. Magmatic complexes of this zone correspond to different settings of the Early Neoproterozoic ocean: oceanic islands, mid-ocean ridges, intraoceanic island arcs, and turbidite basins. Obtained data on volcanic rocks and associated granitoids constrain a timing of the island-arc magmatic complexes, at least within the interval of 888–859 Ma. The comparison of structures of the Songino and Tarbagatai blocks of the Khangai group of terranes showed that they share many common features in their geology and evolution and may be united into the single Songino–Tarbagatai terrane. This terrane was formed owing to the Early Neoproterozoic (~800 Ma) accretion of the ocean island, spreading, island-arc, and turbidite complexes of the oceanic plate to a stable continental massif represented by the Early Neoproterozoic Ider Complex of the Tarbagatai Block. The involvement of the Dzabkhan terrane into a Khangai collage of terranes is constrained between the formation of the volcanic rocks of the Dzabkhan Formation (~770–755 Ma), which are unknown in the Songino–Tarbagatai terrane, and the Tsagaan-Olom carbonate cover (~630 Ma), overlying both the Dzabkhan and Songino–Tarbagatai terranes. It was proposed that the formation of the Precambrian terranes of the Central Asian Orogenic Belt began from the Early Neoproterozoic accretion to the Rodinia supercontinent. The fragmentation of the latter above a mantle superplume at the end of the Early Neoproterozoic spanned also the newly formed fold area. This led to the formation of terranes, which included both fragments of the Paleoproterozoic craton and Early Neoproterozoic structures. Subsequent amalgamation of these Precambrian crustal fragments into composite terranes possibly occurred at the end of the early Baikalian tectonic phase.  相似文献   

17.
This paper summaries tectonic settings and mineral parageneses of several recognized ultrahigh-pressure (UHP) terranes other than the well-studied Kokchetav Massif of northern Kazakhstan, the Western Gneiss Region of Norway, the Dora-Maira massif of the Western Alps, and the Dabie-Sulu terrane of east-central China. Diamond-bearing terranes include the Beni Bousera/Ronda peridotite massif, the Erzgebirge Crystalline Complex, mantle peridotite from a Tibetan ophiolite, and possibly the Maksyutov Complex. Coesite-bearing UHP terranes are the Zermatt-Saas area, Western Alps; the Mali eclogites from West Africa; the Makabal complex of western Tien Shan; the Bohemian massif; and the newly reported Central Indonesia terrane and Himalayan eclogites from the upper Kaghan Valley of Pakistan. Except for the diamond-bearing Tibetan ophiolite, most UHP terranes share similar petrotectonic assemblages and lie within major continental collision belts in Eurasia and Africa. Using new approaches (including new geobarometers) and technologies, additional UHP terranes are expected to be recognized in other Phanenorozic orogenic sutures.  相似文献   

18.
山东半岛的地体构造及金矿成矿的区域地质背景   总被引:5,自引:0,他引:5  
卢冰  胡受奚 《地质论评》1995,41(1):7-14
本文以不整合面的发现及同位素年龄为依据,重新厘定了本区早前寒武纪的地层,从而搞清了本区的大地构造格架,认为它类似于加拿大地盾的“洋葱构造”。本文将山东半岛划分为4个地体:胶北地体,鲁西地体,胶南地体,胶东南-苏东北-黄海地体。认为胶北地体成矿的大地构造背景与南克拉通成矿背景十分相似。胶南地体,黄海地体对胶北地体的俯冲作用为胶北地体提供了成岩成矿物质。根据胶北群和齐山群的地质及及地球化学特征,认为胶  相似文献   

19.
Abstract Two terranes formed since the Late Palaeozoic can be distinguished in southwestern China. One is characterized by the Permo-Carboniferous ice-rafted marine gravel-bearing clastic formation and the cold-water fauna of the Gondwana facies, including the Gangmar Co, Lhasa, Sa ' gya, Tengchong and Baoshan terranes and the other is marked by the Upper Palaeozoic of the Yangtze type with the Cathaysian flora and the Pacific-type fusulinids, comprising the Changning-Menglian, Shuangjiang-Lancang, Qamdo and Bayan Har terranes. The Longmu Co-Shuanghu-Dêngqên-North Lancang River-Kejie-Mengding suture zone between the two groups of terranes is the boundary between Gondwana and Pacifica in southwestern China. On the grounds of the sedimentary formation and successive southwestward migration of the Asian nonmarine Jurassic-Cretaceous endemic bivalves, the ages of the suture and some terranes to the southwest of the suture zone are discussed. The Baoshan terrane and the Nyainrong-Sog terrane in the Lhasa composite terrane were firstly pieced together with the Asian continent in the early Early Jurassic. The northern Tibet-western Yunnan microplate, including the Gangmar Co, Lhasa and Tengchong terranes, collided with the Asian continent at the end of the Early Cretaceous Neocomian.  相似文献   

20.
思茅盆地与呵叻盆地属于同一大地构造带。二者的含钾盐建造在区域分布、沉积特征、成盐层位、析盐矿物组合特征及物质来源等方面具有良好的可比性,是中国海相找钾实现突破的重要潜在区之一。尽管目前对两地钾盐矿的成矿认识取得了许多进展,但对于二者的关系和成矿模式及规律等还存在着较大争议。为了下一步更好地建立思茅盆地钾盐矿的成矿规律和实现深部找钾的突破,本文从构造背景、地层年代、古气候环境和物质来源等方面对最近一些重要进展和认识做了梳理,现已确定:(1)思茅陆块与印度支那陆块在中生代可能为统一的整体,思茅与呵叻盆地基本位于副热带高压带内,在晚三叠世、中—晚侏罗世和晚白垩世具有较好的成盐成钾构造和古气候条件;(2)思茅和呵叻盆地在含钾盐及其下伏地层沉积期间可能具有相似的潜在物源区,包括扬子、松潘—甘孜、可可西里、义敦、北羌塘和南羌塘陆块等;(3)思茅与呵叻盆地钾盐矿的成钾物质主要来自陆源水体,同时也有海水和深部热液补给;(4)思茅和呵叻盆地含钾盐地层的年代部分重叠,但不完全吻合;(5)勐野井钾盐矿与呵叻钾盐矿可能系非同期矿床。综合构造和气候等证据,推测思茅盆地在约85.0 Ma这一呵叻钾盐矿成矿的时段就可能具有了重要的成钾潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号