首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction and assessment of the loss of group residential buildings under fierce winds are not only an important but also a very basic work. Many rural buildings, especially situated in southeastern of China, have suffered great damage and losses during such wind events in past 10 years. One new methodology is proposed in this study in order to estimate and evaluate the loss reasonably based on group building types and distribution, wind intensities and directions. This methodology comprehensively considers the mechanisms of interaction between the roof tiles, roof panels, doors and windows, which are more likely damaged seriously during fierce winds, the physical properties of those components, the wind pressure coefficients on the surface of group buildings in different wind directions, etc. Then Monte Carlo simulation is used to estimate the damage of group residential buildings under simulated fluctuating winds with different speeds and measured typhoon records. The simulation results indicate that our proposed quantified assessment method can be utilized for official, developers, architects, designers and homeowners to estimate and mitigate the losses that might be experienced during wind-related disasters either pre- or post-construction.  相似文献   

2.
Besides the enormous improvement of air quality in Germany due to the reduction of sulphur dioxide emissions in the last decades, high immissions of nitrogen oxides and fine particulate matter are frequently observed at traffic-rich urban sites. The changed chemical composition of air pollution requires a new investigation of its impact on historic buildings constructed of natural stone. In a pilot study a multi-disciplinary approach was chosen to obtain information on the actual pollution situation of historic buildings and monuments at traffic hotspots in Germany. The study concentrated on the two German cities of Munich and Mainz of different size, traffic volume and stone inventory. Dose–response functions were calculated to demonstrate the change of impact of different pollutants over the last three decades, and for comparison of traffic hotspots and housing areas of both cities. Numeric modelling on a city-scale was used to identify the historic buildings and monuments affected by elevated traffic immissions. Because a relevant part of these pollutants is dominated by short-range transport, the differences of wind speed and deposition rates were calculated using a street-scale 3D flow and dispersion model regarding traffic volume, wind regime and adjacent buildings. Finally, particulate matter was sampled at different positions of two buildings heavily exposed to traffic emissions. Individual particles were investigated by environmental scanning electron microscopy. After classification of the particles into different chemical groups, the fraction of traffic-induced particulate matter was quantified. Summarizing the results, it must be stated that soiling by traffic-related particulate matter, deposition of nitrates deriving from exhaust emission and other diffusely emitted components bear a severe damage potential for natural building stone at least locally at traffic-rich urban sites.  相似文献   

3.
The occurrence of subsidence phenomena in urban regions may induce small to severe damage to buildings. Many methods are provided in the literature to assess buildings damage. Most of these methods are empirical and use the horizontal ground strain as a subsidence intensity in the vicinity of a building. Application and comparison of these methods with a case study is the main objective of this paper. This comparison requires some harmonization of the existing methods and the development of a software, which combines the subsidence hazard prediction, the damage evaluation methods and a database of buildings with structural parameters as well as the geographical coordinates of the buildings An additional results is the development of a method for the prediction of the horizontal ground strain in the vicinity of each building. Results are given as a map of damaged buildings for the case study and the different existing methods with some statistical calculations such as the mean and the standard deviation of damage in the city. Comparison of these results allows identification of the “safer” method that give the higher mean of damage. The comparison of the calculated results and observed damage in Lorrain region show that, the Dzegeniuk et al. methods is more realistic in comparison of the other empirical methods.  相似文献   

4.
This study aims to carry out a seismic risk assessment for a typical mid-size city based on building inventory from a field study. Contributions were made to existing loss estimation methods for buildings. In particular, a procedure was introduced to estimate the seismic quality of buildings using a scoring scheme for the effective parameters in seismic behavior. Denizli, a typical mid-size city in Turkey, was used as a case study. The building inventory was conducted by trained observers in a selected region of Denizli that had the potential to be damaged from expected future earthquakes according to geological and geotechnical studies. Parameters that are known to have some effect on the seismic performance of the buildings during past earthquakes were collected during the inventory studies. The inventory includes data of about 3,466 buildings on 4,226 parcels. The evaluation of inventory data provided information about the distribution of building stock according to structural system, construction year, and vertical and plan irregularities. The inventory data and the proposed procedure were used to assess the building damage, and to determine casualty and shelter needs during the M6.3 and 7.0 scenario earthquakes, representing the most probable and maximum earthquakes in Denizli, respectively. The damage assessment and loss studies showed that significant casualties and economic losses can be expected in future earthquakes. Seismic risk assessment of reinforced concrete buildings also revealed the priorities among building groups. The vulnerability in decreasing order is: (1) buildings with 6 or more stories, (2) pre-1975 constructed buildings, and (3) buildings with 3–5 stories. The future studies for evaluating and reducing seismic risk for buildings should follow this priority order. All data of inventory, damage, and loss estimates were assembled in a Geographical Information System (GIS) database.  相似文献   

5.
A tornado with severe intensity hit the municipalities of Pianiga, Dolo and Mira close to Venice, northeast Italy, causing damages on a wide number of residential and industrial buildings and destroying some historical villas. In this study, the authors show the results of the damage assessment survey performed in the first days after the occurrence of the extreme event. Limited literature deals with damage assessment of European building types due to wind actions, and the available one does not consider building vulnerability as key factor in the structural response of existing structures subject to tornado hazard. In this paper, structural damages surveyed in reinforced concrete frame structures and masonry buildings, representative of common Italian building types, are critically discussed. Additionally, this work provides a database of past tornado events in northeast Italy, evidencing how the analyzed area has been found to be quite prone to tornado hazard.  相似文献   

6.
Hurricanes and tropical storms represent one of the major hazards in coastal communities. Storm surge generated by strong winds and low pressure from these systems have the potential to bring extensive flooding in coastal areas. In many cases, the damage caused by the storm surge may exceed the damage from the wind resulting in the total collapse of buildings. Therefore, in coastal areas, one of the sources for major structural damage could be due to scour, where the soil below the building that serves as the foundation is swept away by the movement of the water. The existing methodologies to forecast hurricane flood damage do not differentiate between the different damage mechanisms (e.g., inundation vs. scour). Currently, there are no tools available that predominantly focus on forecasting scour-related damage for buildings. Such a tool could provide significant advantages for planning and/or preparing emergency responses. Therefore, the focus of this study was to develop a methodology to predict possible scour depth due to hurricane storm surges using an automated ArcGIS tool that incorporates the expected hurricane conditions (flow depth, velocity, and flood duration), site-specific building information, and the associated soil types for the foundation. A case study from Monmouth County (NJ), where the scour damages from 2012 Hurricane Sandy were recorded after the storm, was used to evaluate the accuracy of the developed forecasting tool and to relate the scour depth to potential scour damage. The results indicate that the developed tool provides relatively consistent results with the field observations.  相似文献   

7.
A framework of applying the classification and regression tree theory (CART) for assessing the concrete building damage, caused by surface deformation, is proposed. The prognosis methods used for approximated building hazard estimation caused by continuous deformation are unsatisfactory. Variable local soil condition, changing intensity of the continuous deformation and variable resistance of the concrete buildings require the prognosis method adapted to the local condition. Terrains intensely induced by surface deformation are build-up with hundreds of building, so the method of their hazard estimation needs to be approximated and relatively fast. Therefore, promising might be addressing problems of reliable building damage risk assessment by application of classification and regression tree. The presented method based on the classification and regression tree theory enables to establish the most significant risk factors causing the building damage. Chosen risk factors underlie foundation for the concrete building damage prognosis method, which was caused by the surface continuous deformation. The established method enabled to assess the severity of building damage and was adapted to the local condition. High accuracy of shown approach is validated based on the independent data set of the buildings from the similar region. The research presented introduces the CART to determination of the risk of building damage with the emphasis on the grade of the building damage. Since presented method bases on the observations of the damages from the previous subsidence, the method might be applied to any local condition, where the previous subsidence is known.  相似文献   

8.

Excavation-induced ground movements and the resulting damages to adjacent structures and facilities is a source of concern for excavation projects in urban areas. The concern will be even higher if the adjacent structure is old or has low strength parameters like masonry building. Frame distortion and crack generation are predictors of building damage resulted from excavation-induced ground movements, which pose challenges to projects involving excavations. This study is aimed to investigate the relation between excavation-induced ground movements and damage probability of buildings in excavation affected distance. The main focus of this paper is on masonry buildings and excavations stabilized using soil nail wall method. To achieve this purpose, 21 masonry buildings adjacent to 12 excavation projects were studied. Parametric studies were performed by developing 3D FE models of brick walls and excavations stabilized using soil nail wall. Finally, probability evaluations were conducted to analyze the outputs obtained from case studies. Based on the obtained results, simple charts were established to estimate the damage of masonry structures in excavation affected distance with two key parameters including “Displacement Ratio” and “Normalized Distance”. The results also highlight the effects of building distance from excavation wall on its damage probability.

  相似文献   

9.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   

10.
After the earthquake occurrence, collecting correct information about the extent of damage is essential for managing critical conditions and allocating limited resources. The prepared building damage maps sometimes bring about waste of time required for rescuing individuals under the rubble by wrongly conducting rescue teams toward regions with a lower rescue priority. In this research, an algorithm based on using a proposed standard at database level was developed to prioritize damaged buildings by considering five key elements of land use type, the degree of damage to buildings, the land use differentiation index, time of the highest population density in each land use, and time of disaster’s incidence. The steps of the proposed method which was implemented in the MATLAB environment include: detecting buildings on the pre- and post-event imagery, implementing texture features for each candidate building, choosing the optimal features by genetic algorithm, determining the degree of building damage in three classes of negligible damage, substantial damage, and heavy damage by using the difference between chosen features as inputs of the designed neurofuzzy inference system. Data collected from field observations were compared to the output obtained from the proposed algorithm. This comparison presented a general accuracy of 88% and Kappa coefficient of 79% in the classification of buildings into three damage classes. The proposed standard then was used for classifying damaged buildings into relief priorities of high, medium, and low. Findings revealed that the relief priority map could be a basis for correct guidance of relief and rescue teams during crucial times following earthquakes.  相似文献   

11.
Hengjian  Lu  Kohiyama  Masayuki  Horie  Kei  Maki  Norio  Hayashi  Haruo  Tanaka  Satoshi 《Natural Hazards》2003,29(3):387-403
The relationship between building damage patterns and human casualties in Nishinomiya City – one of the most heavily damaged cities in the 1995 Hanshin-Awaji Earthquake Disaster – was investigated using photographs of damaged buildings. First, the photographs of buildings in which casualties occurred were identified, and the building damage patterns were judged based on the photographs considering the existence of survival space. Then the relationship between the building damage pattern and casualty occurrence, and the characteristics of casualty distribution, were investigated. The main findings were as follows: Most casualties occurred in relatively old two-story wooden buildings in which the ground floor completely collapsed without survival space; casualties occurred at all building damage levels including ``no damage', and it can be seen that building damage is the major, but not the sole cause, of casualties in an earthquake; in Nishinomiya City, the regional distributions of casualties due to the collapse of buildings that left no survival space is similar to that of casualties due to other types of building damage.  相似文献   

12.
A large amount of buildings was damaged or destroyed by the 2011 Great East Japan tsunami. Numerous field surveys were conducted in order to collect the tsunami inundation extents and building damage data in the affected areas. Therefore, this event provides us with one of the most complete data set among tsunami events in history. In this study, fragility functions are derived using data provided by the Ministry of Land, Infrastructure and Transportation of Japan, with more than 250,000 structures surveyed. The set of data has details on damage level, structural material, number of stories per building and location (town). This information is crucial to the understanding of the causes of building damage, as differences in structural characteristics and building location can be taken into account in the damage probability analysis. Using least squares regression, different sets of fragility curves are derived to demonstrate the influence of structural material, number of stories and coastal topography on building damage levels. The results show a better resistant performance of reinforced concrete and steel buildings over wood or masonry buildings. Also, buildings taller than two stories were confirmed to be much stronger than the buildings of one or two stories. The damage characteristic due to the coastal topography based on limited number of data in town locations is also shortly discussed here. At the same tsunami inundation depth, buildings along the Sanriku ria coast were much greater damaged than buildings from the plain coast in Sendai. The difference in damage states can be explained by the faster flow velocities in the ria coast at the same inundation depth. These findings are key to support better future building damage assessments, land use management and disaster planning.  相似文献   

13.
泥石流作用下建筑物易损性评价方法分析与评价   总被引:1,自引:0,他引:1  
曾超  贺拿  宋国虎 《地球科学进展》2012,27(11):1211-1220
建筑物易损度评价作为泥石流易损度评价的重要组成部分,其研究是实现城镇及居民点泥石流风险定量化和风险管理的必要环节。综述近30年来,泥石流作用下建筑物易损度研究的发展过程,并指出以统计分析方法建立的建筑物易损度曲线普适性差且力学机理不明等问题,提出数值计算和模型实验的手段获取建筑物结构易损度的机理模型。由于建筑物易损度研究问题本身的复杂性,统计分析方法仍将作为建筑物易损度研究的重要手段,力学机理明晰的研究方法则将成为今后研究的难点和热点。此外,地震、滚石、雪崩等类似灾种的易损度研究方法和成果可被借鉴到泥石流领域。针对灾害中因结构破坏引发人员伤亡的情况,建议采用时间概率和基于条件概率的事件树方法计算建筑物内人员易损度。最终形成综合结构和人员易损度研究成果的建筑物易损度评价方法。  相似文献   

14.
In order to study the relationship between the shapes of roughness-elements on sand beds and the surface sand activity inhibition, we chose six shapes of elements including spherical, triangular pyramid shape, cylindrical, square shape, pie and hemispherical shape by hand with equal quality kept. We carried out the experiment with the 10% coverage on the wind tunnel. The results revealed that ① the erosion and anti-erosion rate of spherical, triangular pyramid shape, cylindrical and square roughness-elements were better than the pie and hemispherical on the non-sand wind; ② On the sand-driving wind conditions, spherical, triangular, cylindrical covered beds became erosion to erosion-deposition with the increase of wind speed, and the erosion rate was increased with the wind speed. When the wind speed was more than 10 m/s, the sand-beds showed a strong erosion, and the pie and hemispherical elements’ resistance function were weakest; ③ No matter the non-sand wind or sand wind, the erosion rate was affected by the elements’ aspect ratio, height and spacing. The slender elements with a prominent upper edge were clearly superior to broad rounded elements.  相似文献   

15.
Building Damage Extraction from Post-earthquake Airborne LiDAR Data   总被引:1,自引:0,他引:1  
Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging(Li DAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith(θ) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation(σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types(i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage.  相似文献   

16.
建(构)筑物的变形控制指标   总被引:1,自引:0,他引:1  
吴锋波 《岩土力学》2010,31(Z2):308-316
城市轨道交通和其他市政地下工程建设难免造成周边建(构)筑物的变形,确定建(构)筑物的变形控制指标是进行安全监测和控制的基础。总结目前建(构)筑物控制的各类变形参数,对其定量化研究成果进行归纳,根据收集的大量变形监测资料,划分建(构)筑物的变形损坏等级,对其沉降、差异沉降和倾斜等常规监测项目进行重点分析,并研究了建筑尺寸和变形量、损坏等级的关系。研究结果表明,砂土地层独立柱基的建筑易于产生变形破坏,应防止建筑过量沉降引起的其他变形损坏;建(构)筑物的角变量小于0.002时一般未出现较大影响;建筑尺寸影响变形的大小,应密切关注易于出现变形损坏的多层、高层建筑。  相似文献   

17.
煤矿开采所产生的地表沉降、开裂、塌陷等地质灾害,造成地表民房不同程度的损坏。为准确分析矿山开采对地表民房的损坏,从矿山开采造成地表沉降影响范围,矿山开采最大冒落高度与导水裂隙带高度,矿山开采引起地表最大水平移动值、最大曲率值、最大倾斜值等因素来研究分析。综合分析认为:引起地表民房损坏的主要原因一是地表民房正处在采动影响范围内;二是开采冒落带与裂隙带高度已经波及至地表,从而引起地表出现沉降与裂缝等现象,引发房屋开裂等损坏现象;三是煤矿采空区所产生的最大曲率值远远大于地表建筑允许变形值。该方法对研究煤矿开采造成地表民房损坏成因分析具有一定指导意义。  相似文献   

18.
Extreme wind events such as typhoons and tornadoes can cause devastating damage to structures and huge losses to human societies. This paper introduces recent devastating wind-related disasters in East Asia, including disasters in Japan, the Philippines and China, from 2013 to 2016. In particular, it describes several post-disaster investigations including those on Typhoon Haiyan in 2013 in the Philippines; typhoon Mujigae and two typhoon-associated tornadoes in October, 2015, in Guangdong, China; and a tornado in June, 2016 in Yancheng, China. Meteorological features, damage details and failure mechanisms of structures, factors related to damage generation and spread, scales to evaluate storms, estimations of tornado wind speeds and so on are discussed, with the aim of mitigating future wind-related disasters and to create safer and sustainable societies. Lessons derived from aerodynamic effects, cladding and component performances, debris impacts, building arrangements, fatigue effects, construction methods, etc. together with suggestions for wind-resistant design of buildings are given.  相似文献   

19.
This article analyzes the direct damage to residential buildings caused by the flooding of New Orleans after hurricane Katrina in the year 2005. A public dataset has been analyzed that contains information on the economic damage levels for approximately 95,000 residential buildings in the flooded area. The relationship between the flood characteristics and economic damage to residential buildings has been investigated. Results of hydrodynamic flood simulations have been used that give insight in water depths and flow velocities in the study area. In general, differences between the three polders in the observed distributions of damage estimates are related to differences in flood conditions. The highest damage percentages and structural damage mainly occurred in areas where higher flow velocities occurred, especially near the breaches in the Lower 9th Ward neighborhood. Further statistical analysis indicated that there is not any strong one-to-one relationship between the damage percentage and the water depth or the depth–velocity product. This suggests that there is considerable uncertainty associated with stage-damage functions, especially when they are applied to individual structures or smaller clusters of buildings. Based on the data, a more general approach has been proposed that could be used to distinguish different damage zones based on water depth and flow velocity for an area that is affected by flooding due to breaching of flood defenses. Further validation of existing damage models with the dataset and further inclusion of information on building type in the analysis of damage levels is recommended.  相似文献   

20.
Seismic risk assessment of buildings in Izmir,Turkey   总被引:1,自引:1,他引:0  
Izmir, the third largest city and a major economic center in Turkey, has more than three million residents and half million buildings. In this study, the seismic risk in reinforced concrete buildings that dominate the building inventory in Izmir is investigated through multiple approaches. Five typical reinforced concrete buildings were designed, modeled and assessed for seismic vulnerability. The sample structures represent typical existing reinforced concrete hospital, school, public, and residential buildings in Izmir. The seismic assessments of the considered structures indicate that they are vulnerable to damage during expected future earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号