首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Origin of granites in an Archean high-grade terrane,southern India   总被引:4,自引:0,他引:4  
Archean deep-level granites in southern India are similar geochemically to young granites from continentalmargin arc systems. They exhibit light REE enriched patterns with variable, but chiefly positive Eu anomalies. This is in striking contrast to the negative Eu anomalies typical in high-level Archean granites. In addition, the deep-level granites are relatively enriched in Ba and Sr and depleted in total REE and high field strength elements (HFSE). One pluton, the Sankari granite, has unusually low contents of REE and HFSE. Most of the deep-level granites appear to represent cumulates with variable amounts of trapped liquid and of minor phases, resulting from fractional crystallization of a granitic parent. Such parental granitic magmas can be produced by batch melting of Archean tonalite at middle to lower crustal depths. The Sankari granite requires a tonalitic source depleted in REE and HFSE. Archean tonalites and tonalitic charnockites exhibit original igneous geochemical signatures and their average composition does not show a significant Eu anomaly. Hence, they cannot represent the positive Eu-anomaly complement to the negative Eu-anomaly, high-level granites. Our results suggest that Archean deep-level granites may represent this complement. Such granite may form in waterrich zones in the middle or lower crust and be produced in response to dehydration of the lower crust by a rising CO2-rich fluid phase.  相似文献   

2.
Banded iron-formations (BIF) form an important part of the Archean supracrustal belts of the Jharkhand-Orissa region, India. Major, trace and REE chemistry of the banded iron-formation of the Gandhamardan, Deo Nala, Gorumahisani and Noamundi sections of the Jharkhand-Orissa region are utilized to explore the source of metals and to address the thermal regime of the basin floor and the redox conditions of the archean sea. Hydrothermal fluids of variable temperatures might have contributed the major part of the Fe and other trace elements to the studied banded iron-formations. Diagenetic fluids from the sea floor sediments and river water might have played a subdued role in supplying the Fe and other elements for the banded iron-formations.  相似文献   

3.
The basic volcanic group exposed in the Kadiri schist belt includes high Mg-basalt, basalt, basaltic andestite and dacite. The basalts are tholeiitic in composition and high Mg-basalts, basaltic andesites and dacites show calc-alkaline affinity. Major and trace element characteristics suggest that the volcanic suite has been derived from an initial tholeiitic magma which has given rise to an early basaltic type and a later calc-alkaline type of rocks. An island arc and active continental margin tectonic setting was inferred for these rocks.  相似文献   

4.
The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low (87Sr86Sr)I], post-kinematic granites [negative Eu-anomalies, high (87Sr86Sr)I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics.REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher LaNYbN. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.  相似文献   

5.
The Archaean craton of southern India is characterized by a highly complicated and not yet fully understood geological history comprizing several cycles of sedimentation and volcanism, deformation and metamorphism in the span between about 3400 and 2500 m. y. The large scale regional variation in metamorphic grade observed today is essentially related to a metamorphic event at about 2600 m. y. ago which affected an older migmatite, gneiss-greenstone terrain (2900–3400 m. y.).The southern area is characterized by granulite facies (700–750° C/8–10 kb). An extensive charnockite-khondalite belt has been generated by atectonic transformation of the migmatite-gneiss terrain through the influx of a CO2-rich fluid. Towards the north of the terrain the metamorphic grade decreases to amphibolite facies (600° C/6–8 kb) and to greenschist facies (400° C) which is restricted to the Dharwar greenstone belts. Metamorphism related to younger shear zones in the southern part of the craton led to retrogression of the charnockite-khondalite series under conditions of amphibolite to greenschist facies.The P-T conditions of metamorphism have been evaluated applying mineral stability data and methods of geothermometry and geobarometry in an area between Shimoga-Chitradurga (North) and Coimbatore-Karur (South).
Zusammenfassung Der archaische Kraton Südindiens ist durch eine komplexe, noch nicht vollständig aufgeklärte geologische Entwicklungsgeschichte gekennzeichnet. Sie umfaßt mehrere Zyklen von Sedimentation und Vulkanismus, Deformation und Metamorphose in der Zeitspanne von etwa 3400 bis 2500 Ma. Die großregionale metamorphe Zonierung wird im wesentlichen als das Ergebnis eines Metamorphose-Ereignisses vor ca. 2600 Ma angesehen, das den gesamten archaischen Komplex aus granitoiden Gneisen, Migmatiten und Greenstone-Serien erfaßte.Das südliche Gebiet ist durch Bedingungen der Granulitfazies (700–750° C/8–10 kb) charakterisiert. Hier entstand eine ausgedehnte Charnockit-Khondalit-Zone durch post-tektonische Umwandlung der Migmatit-Gneisserien infolge Zufuhr einer CO2-reichen fluiden Phase. Nach Norden zu nimmt der Metamorphosegrad bis zur niedrigtemperierten Amphibolitfazies (600° C/6–8 kb) und in den Dharwar-Greenstone Belts sogar bis zur Grünschieferfazies (400° C) ab.Eine jüngere Metamorphose von Amphibolit-bis Grünschieferfazies ist auf proterozoische Scherzonen beschränkt. Im südlichen Gebiet führte sie zu einer örtlich unterschiedlich intensiven retrograden Überprägung der Charnockit-Khondalit-Serie.Die P-, T-Bedingungen der Regionalmetamorphose wurden anhand von Mineralstabilitätsdaten und mit Methoden der Geothermometrie und Geobarometrie für das Gebiet zwischen Shimoga-Chitradurga (Norden) und Coimbatore-Karur (Süden) abgeleitet.

Résumé Le craton archéen de l'Inde méridionale est caractérisé par une évolution géologique complexe et mal connue. Elle comprend plusieurs cycles de sédimentation et de volcanisme, de déformation et métamorphisme d'une durée d'environ 3400 jusqu'à 2500 Ma.La variation du degré de métamorphisme observée aujourd'hui est considérée comme le résultat d'un épisode de métamorphisme datant d'environ 2600 Ma, qui a affecté l'ensemble du domaine archéen composé de granitoïdes et de ceintures de roches vertes.La région méridionale de craton est caractérisée par le faciès granulite (700–750 °C/ 8–10 kb). Une zone étendue de charnockites et khondalites est le produit d'une transformation postdéformative résultant de l'apport d'une phase fluide riche en CO2. Vers le nord le degré de métamorphisme décroit jusqu'au faciès amphibolites (600 °C/6–8 kb) et même jusqu'au faciès schistes verts (400 °C) dans les ceintures dharwariennes de roches vertes.Un épisode tardif de métamorphisme de faciès amphibolites et schistes verts est limité aux zones à décollement intense d'âge protérozoïque. Dans la région méridionale il s'est produit un rétromorphisme des roches granulitiques dans la zone des charnockites et khondalites.Les conditions de pression et température ont été déduites de l'application de données sur la stabilité des minéraux et de méthodes de géothermométrie et de géobarométrie pour la région entre Shimoga-Chitradurga (nord) et Coimbatore-Karur (sud).

, . , , 3400 2500 . , , 2600 , , , . (700–750 °, 8–10 ). / - , 2. (600 °, 6–8 ) Dharwar (400 °). . / , . , Shimoga-Chitradurga () Coimbatore-Karur ().


The present study is part of a joint project of Benaras Hindu University at Varanasi and University of Kiel. Financial Support by the Deustche Forschungsgemeinschaft is gratefully acknowledged.

We especially thank M. N. Viswanatha, Geological Survey of India, for his cooperation during the field work.  相似文献   

6.
The Bulawayan Group in the Midlands greenstone belt can be divided into three formations. The Mafic Formation is composed principally of pillowed, low-K tholeiites and minor bedded chert. The Maliyami Formation and conformably overlying Felsic Formation are composed of calc-alkaline tholeiites, andesites, and dacites with andesites dominating in the Felsic Formation. Minor rhyolite quartz porphyries and ultramafic bodies also occur in the section. The Bulawayan Group near Que Que is perhaps the least altered and metamorphosed Archean greenstone succession known. The absence of andesite and related rocks, the association of bedded chert, and the consistently low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they represent Archean oceanic rise tholeiites. The compositions of tholeiites and andesites of the Maliyami Formation, however, suggest that they represent an emerging arc system. The Felsic Formation is interpreted as a more advanced stage in the evolution of this arc system.Trace-element model calculations favor an origin for Mafic Formation tholeiites involving about 30% partial melting of a lherzolite source. Similar calculations are consistent with an origin for Maliyami Formation tholeiites, Maliyami and Felsic Formation andesites, and Midlands rhyolites involving, respectively, 50, 20–30, and 10% equilibrium melting of eclogite or garnet amphibolite (of Mafic Formation tholeiite composition). The low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they were derived from an upper mantle source as depleted in these elements as the oceanic upper mantle is today.A plate tectonic model is proposed for the Bulawayan Group in which the Mafic Formation is derived from a depleted lherzolite source beneath a spreading center in a marginalsea basin and the Maliyami and Felsic Formations and associated rhyolites are produced by partial melting of eclogite in a descending slab located west of the basin.  相似文献   

7.
Archean clastic sedimentary rocks are well exposed in the Pilbara Block of Western Australia. Shales from turbidites in the Gorge Creek Group (ca. 3.4 Ae) and shales from the Whim Creek Group (ca. 2.7 Ae) have been examined. The Gorge Creek Group samples, characterized by muscovite-quartzchlorite mineralogy, are enriched in incompatible elements (K, Th, U, LREE) by factors of about two, when compared to younger Archean shales from the Yilgarn Block. Alkali and alkaline earth elements are depleted in a systematic fashion, according to size, when compared with an estimate of Archean upper crust abundances. This depletion is less notable in the Whim Creek Group. Such a pattern indicates the source of these rocks underwent a rather severe episode of weathering. The Gorge Creek Group also has fairly high B content (85 ± 29 ppm) which may indicate normal marine conditions during deposition.Rare earth element (REE) patterns for the Pilbara samples are characterized by light REE enrichment (LaNYbN ≥ 7.5) and no or very slight Eu depletion (EuEu1 = 0.82 – 0.99). A source comprised of about 80% felsic igneous rocks without large negative Eu-anomalies (felsic volcanics, tonalites, trondhjemites) and 20% mafic-ultramafic volcanics is indicated by the trace element data. Very high abundances of Cr and Ni cannot be explained by any reasonable provenance model and a secondary enrichment process is called for.  相似文献   

8.
《Gondwana Research》2002,5(2):453-465
The Kunduru Betta Ring Complex (KRC), at the southern margin of Dharwar craton, South India, comprises metaluminous sub-solvus syenites and quartz monzonite with a concentric disposition younging towards the center. An outer mafic syenite (of lamprophyric affinity) is followed by porphyritic monzonite, quartz monzodiorite and finally a quartz monzonitic stock at the centre.SiO2, Al2O3 and Na2O increase from the primitive lamprophyric mafic syenite to the quartz monzonite through the intermediate members, while CaO, MgO, Fe2O3T, TiO2, P2O5 and MnO show an opposite trend suggesting fractionation of hornblende, clinopyroxene, biotite, apatite, sphene, and iron oxide minerals. Rb, Th and U increase with a complementary decrease in Sc, V, Cr, Co, Cu, Sr and Ba from the outer mafic syenite to the inner quartz monzonite. Y, Zr and Hf decrease from lamprophyric mafic syenite to quartz monzodiorite and the trend is reversed in the final quartz monzonite phase. However, the suite is characterised by a compositional gap between quartz monzodiorite and quartz monzonite. Total REE gradually decrease from the mafic syenite to quartz monzonite and the REE distribution patterns show LREE-enriched and HREE-depleted parallel distributions with negligible Eu anomalies.The geochemical data suggest that the rock types were formed as products of progressive differentiation by crystal fractionation of calc-alkaline lamprophyric parent magma which was derived by partial melting of metasomatically enriched mantle in the Kabini lineament. Although the quartz monzonites conform to the trend of differentiated Kunduru Betta suite, the compositional gap between them and the quartz monzodiorite precludes their origin by simple differentiation. It is suggested that convective liquid fractionation might have resulted in the discrete body of quartz monzonite.  相似文献   

9.
Fe-nodules occur within saprolites formed from weathering of granodioritic gneisses in the rain-shadow region of the Mysore Plateau adjacent to the Sahyadri Mountains in Southern India. These nodules and their host saprolites were studied for their geochemistry, including chemical speciation, to understand nodule formation and chemical redistribution processes during rock weathering. From their mode of occurrence, and mineralogical and geochemical data, we infer that the nodules originated by a two-stage process in which the initial extensive weathering of gneisses likely facilitated subsequent ferrolysis weathering and nodule formation. Nodules originated by precipitation of goethite, hematite and gibbsite along with several amorphous phases within the matrix of weathered gneisses. This is possible only under hydromorphic conditions, suggesting that parts of the plateau must have gone through a humid phase prior to the present aridity. In the saprolites, Al, Fe, and Ti become enriched because of the removal of Si, Ca, Na, and K. However within the nodule, Fe, Ti, Cr, and Ni are deposited after their chemical transport from the saprolite. Titanium, known for its immobile nature, was also mobilized and concentrated under the conditions of nodule formation. The most important elements in the nodule constitution are Fe, Al, Ti, and Mn, each having both crystalline and amorphous phases. Fe-Ti and Mn oxyhydroxides grain coatings in the saprolites and discrete amorphous Mn and Ti phases in the nodules seem to have scavenged trace elements from the weathering profile. REE were mobilized during weathering and nodule genesis in which Ce and Ti show a strong geochemical coherence. The enrichment of only HREE in saprolite, and both HREE and LREE with significant Ce in the nodule, indicate the control of evolving secondary minerals in the REE redistribution during rock weathering. Strong enrichment of Ce in the weathering profile and in nodules has important implications to the REE chemistry of river waters.  相似文献   

10.
The geochemistry and isotope systematics of Archean greenstone belts provide important constraints on the origin of the volcanic rocks and tectonic models for the evolution of Archean cratons. The Kam Group is a approximately 10-km-thick pile of submarine, tholeiitic mafic, and subordinate felsic volcanic rocks erupted between 2712 and 2701 Ma that forms the bulk of the Yellowknife greenstone belt in the dominantly granite-metasedimentary Slave Province. Mafic rocks range from Normal-mid-ocean range basalt-like basalts to slightly light-rare-earth-element-enriched (LREE-enriched) but Nb-depleted basaltic andesites and andesites, whereas dacitic to rhyodacitic felsic rocks are strongly LREE-enriched and highly depleted in Nb. The varepsilonTNd range from +5 to -3 in the mafic to intermediate rocks and from 0 to -5.5 in the felsic rocks. The varepsilonTNd decreases with increasing La/Sm, SiO2 and decreasing Nb/La, suggesting that as the mafic magmas evolved they were contaminated by older basement rocks. Gneissic granitoids >2.9 Ga in age, found at the base of the Kam Group, have varepsilonTNd between -6 and -9 and are excellent candidates for the contaminant. The geochemical and isotopic data, combined with the submarine eruptive setting and field evidence for existing continental basement, support a continental margin rift model for the Kam Group. Similar geochemical-isotopic studies are required on other Slave greenstone belts in order to test evolutionary models for the Slave Province.  相似文献   

11.
Archean metasedimentary rocks occur as components of the Isua supracrustals, Akilia association and Malene supracrustals of southern West Greenland. Primary structures in these rocks have been destroyed by metamorphism and deformation. Their chemistry and mineralogy is consistent with a sedimentary origin, but other possible parents (e.g. acid volcanics, altered pyroclastic rocks) cannot be excluded for some of them. There is little difference in the composition of metasedimentary rocks from the early Archean Isua supracrustals and probable correlative Akilia association. Both have a wide range in rare earth element (REE) patterns with LaNYbN ranging from 0.61?5.8. The REE pattern of one Akilia sample, with low LaNYbN, compares favourably with that of associated tholeiites and it is likely that such samples were derived almost exclusively from basaltic sources. Other samples with very steep REE patterns are similar to felsic volcanic boulders found in a conglomeratic unit in the Isua supracrustals. Samples with intermediate REE patterns are best explained by mixing of basaltic and felsic end members. Metasedimentary rocks from the Malene supracrustals can be divided into low silica (≤55% SiO2) and high silica (>77% SiO2) varieties. These rocks also show much variation in LaNYbN (0.46?14.0) and their origin is explained by derivation from a mixture of mafic volcanics and felsic igneous rocks. The wide range in trace element characteristics of these metasedimentary rocks argues for inefficient mixing of the various source lithologies during sedimentation. Accordingly, these data do not rigorously test models of early Archean crustal composition and evolution. The systematic variability in trace element geochemistry provides evidence for the bimodal nature of the early Archean crust.  相似文献   

12.
This present study describes the geochemistry of fluvial sediments of the Palar river (lower reaches), Southern Peninsular India, with an aim to evaluate their provenance, weathering and tectonic setting. The bulk sediment chemistry is influenced by grain size. The river sediments are enriched with SiO2 and depleted in Al2O3, K2O, CaO, Na2O, MgO, P2O5, MnO, Fe2O3 as compared with UCC values. Geochemical classification indicate that the sediments are mainly arkose, wacke and shale in composition. Discriminant diagrams together with immobile element ratio plots reveal that, the Palar river sediments are mostly derived from rocks formed in an active continental margin. Additionally, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate felsic rock sources. The chemical indices of alteration suggest that Palar river sediments are chemically immature and have experienced low chemical weathering effects. This is further supported by the Th/U Rb/Sr ratio and A-CN-K ternary diagram, with most of the sample data points falling close to the plagioclase-smectite line. The bivariate plot of Th/Sc versus Zr/Sc suggest a moderate recycled origin of the sediments.  相似文献   

13.
The Archean Mkhondo suite in southern Swaziland is a multiply deformed succession of metasediments intruded with amphibolite dykes and sills and granitoid gneisses. Mineral and textural relationships indicate an early period of granulite facies metamorphism, followed later by amphibolite facies metamorphism. Geothermobarometry indicates maximum temperatures of 700–900°C and burial depths of 25–3 km. Paragneisses and biotite quartzites have LREE enriched patterns with small negative Eu anomalies, whereas white quartzites show variable REE patterns and low REE concentrations. BIF has slight LREE enrichment and Eu anomalies. Amphibolites have moderate LREE enrichment and depletions in Ta---Nb and P. Unlike many Archean granitoids, the Mkhondo granitoid gneisses are high in K and other LILE, have large negative Eu anomalies and are not depleted in HREE.SHRIMP isotopic analyses of detrital zircons from a biotite quartzite define a source age of 3600–3460 Ma. A deformed granitoid in tectonic contact with the Mkhondo suite yields a zircon evaporation mean age of 3192±5 Ma, which is interpreted as the age of emplacement. A zircon evaporation age of a granitic melt patch in paragneiss, as well as whole-rock and garnet Sm---Nd isotopic ages, suggest that the peak of high-grade metamorphism in the Mkhondo suite occurred at about 2750 Ma. This is the first evidence for Late Archean high-grade metamorphism in the southeastern Kaapvaal craton. The age data of this study restrict deposition of the Mkhondo suite to between 3.2 and 2.75 Ga.Mkhondo paragneisses are interpreted as shales with biotite quartzites as iron- and quartz-rich detrital sediments. Geochemical mixing calculations indicate that the sediment sources were composed of basalt (±komatiite), TTG and Eu-depleted granitoids. The Mkhondo assemblage may have been deposited along a passive continental margin or in a continental interior basin. The presence of minor BIF with positive Eu anomalies suggests minor hydrothermal input into the sedimentary basin. Intense chemical weathering was probably most important in production of the relatively pure quartz sands.  相似文献   

14.
Magnetotelluric studies over the Bundelkhand craton indicates a high resistivity sub-structure, typically observed in the Archean-Proterozoic regions. The geoelectric section shows a single high resistivity layer in the northern part of the craton, extending from surface to a depth of about 60 km and a three layered resistivity structure overlying a conductive bottom in its southern part. The geological studies reported earlier have delineated an EW trending zone of ultramafic rocks, called the Bundelkhand tectonic zone (BTZ), which marks the divide between the two electrical resistivity patterns. The geoelectric structure is broadly indicative of a northward dipping tectonic fabric in this region which conforms to the Himalayan subduction, to the immediate north of this craton. However this observation cannot explain the findings from geochemical, isotope analysis and geological studies, suggesting possible vertical block movements in the region, which are also indicated in the Bouguer gravity studies. The geoelectric structure beneath the Vindhyan group to the south shows low resistivities even up to 60 km, suggesting that the Bundelkhand craton which is characterized by high resistivity rocks, does not extend to the south beneath the Vindhyans, as was believed by the earlier researchers. A low resistivity body with an extremely high conductance of about 100,000 Siemens is delineated at the mid crustal depths beneath the exposed Bijawars south of Bundelkhand craton. The causative factors behind this low resistivity are not immediately apparent, but some possibilities are discussed here.  相似文献   

15.
 Sittampundi and Bhavani Archean layered meta-anorthosite complexes occur as tectonic lenses within the Cauvery shear zone (CSZ), a crustal scale shear dividing the Precambrian granulite crust of south India into late Archean (> 2.5 Ga) and Proterozoic (c. 0.55 Ga) blocks. They and their host supracrustal-gneiss rocks record at least two stages of tectonometamorphic history. The first is seen as regional scale refolded isoclinal folds and granulite metamorphism (D1-M1) while the second stage is associated with dominantly E–W dextral transcurrent shearing and metamorphic recrystallisation (D2-MCSZ). Whole rock Sm-Nd isochrons for several comagmatic rocks of the layered complexes yield concordant ages: Sittampundi – 2935±60 Ma, ɛNd + 1.85±0.16 and Bhavani – 2899±28 Ma, ɛNd + 2.18±0.14 (2σ errors). Our Sm-Nd results suggest that: (1) the magmatic protoliths of the Sittampundi and Bhavani layered complexes were extracted from similar uniform and LREE depleted mantle sources; (2) M1 metamorphism occurred soon after emplacement at c.3.0 Ga ago. P-T estimates on garnet granulites from the Sittampundi complex characterise the MCSZ as a high-P event with metamorphic peak conditions of c. 11.8 kbar and 830°C (minimum). The MCSZ is associated with significant isothermal decompression of the order of 4.5–3.5 kbar followed by static high-temperature rehydration and retrogression around 600°C. The timing of MCSZ is inferred to be Neoproterozoic at c. 730 Ma based on a whole rock-garnet-plagioclase-hornblende Sm-Nd isochron age for a garnet granulite from the Sittampundi complex and its agreement with the 800–600 Ma published age data on post-kinematic plutonic rocks within the CSZ. These results demonstrate that the Cauvery shear zone is a zone of Neoproterozoic reworking of Archean crust broadly similar to the interface between the Napier and Rayner complexes of the East Antarctic shield in a model Proterozoic Gondwana supercontinent. Received: 5 December 1995 / Accepted: 3 May 1996  相似文献   

16.
宋健  刘志宏  王超  高翔  孙理难 《地质学报》2018,92(5):908-927
吉林南部地区是华北克拉通北缘重要的太古宇出露区。为探讨华北克拉通新太古代构造-岩浆热事件的性质及早前寒武地壳的形成与演化,选择吉林南部夹皮沟TTG片麻杂岩进行研究。研究表明这套岩石高Al(Al2O3=14.97%~16.28%),富Na(Na2O=3.73%~4.54%)、低Mg(MgO=1.96%~2.56%)且平均镁指数为43;富集LREE,亏损HREE,Eu异常并不明显;富集Sr(358×10~(-6)~1114×10~(-6))、Ba(613×10~(-6)~1200×10~(-6))等大离子亲石元素,亏损Nb(6.39×10~(-6)~11.2×10~(-6))、Ta(0.384×10~(-6)~0.679×10~(-6))等高场强元素;Yb(1.17×10~(-6)~1.89×10~(-6))和Y(9.93×10~(-6)~19.3×10~(-6))含量也很低,Sr/Y比值很高(36.0~57.7),以上地球化学特征表明其残留相主要为石榴子石、角闪石和含Ti矿物,没有斜长石,属于高压型TTG岩类。LA-ICPMS锆石U-Pb结果表明其形成于~2509Ma,属于新太古代晚期的产物。结合以往TTG片麻岩类的地球化学研究及Nd模式年龄,这期岩浆事件可能代表古老地壳(~2.8Ga)的重熔。岩相学和锆石形态学研究表明研究区经历了多期变质作用,其中~2509Ma的高级变质事件与岩浆事件几乎同时,可能与地幔柱环境下的岩浆底侵作用有关。  相似文献   

17.
Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction–accretion–collision tectonic history of the Neoproterozoic Gondwana suture.  相似文献   

18.
19.
Major ion chemistry of water and elemental geochemistry of suspended and surficial sediments collected from the Cauvery Estuary were studied to understand the geochemical processes in this tropical estuarine system. Specific conductance (EC), total dissolved solids (TDS), and total suspended matter (TSM) increased conservatively with increasing chlorinity. In general, SO4 2?, Na, K, Ca, and Mg showed an increasing trend while H4SiO4 and PO4 3? showed a decreasing trend toward the sea. Additional removal mechanisms operating for these ions in the Cauvery Estuary have been identified based on observed concentrations. Factor analysis pointed out the sources contributing to the observed trends in estuarine water chemistry. POC and PON decreased toward the high chlorinity zone. TSM in the Cauvery Estuary were mostly of inorganic nature. Stable carbon isotope values showed that the carbon was equally of marine and terrestrial origin and helped to delineate the contribution of river water and seawater. The ? mean size (a logarithmic grain size scale commonly used by sedimentologists) indicated that the surficial sediments were primarily comprised of coarse and silt, whereas suspended sediments were principally silt and clay. Suspended sediments were enriched in clays compared to surficial sediments. Quartz and feldspar were abundant among detritals while chlorite, kaolinite, and montmorillonite were dominant among clays. Silicon was the most abundant element in the sediments followed by Al, Ca, Na, K, Fe, Mn, and P. Heavy metals were enriched in the suspended sediments compared to the surficial bottom sediments as follows: Fe = 3.5, Mn = 7.4, Pb = 1.1, Zn = 15.2, Cu = 7.4, and Cr = 4.0. The levels of Cd, Cr, Zn, and Fe increased up the middle reaches and then decreased toward the sea due to urban effluent and fertilizer input. Size fractionation studies indicated that the metal concentration in the finer fraction was 50% higher by mass than the coarse silt and fine silt fractions. Chemical fractionation studies showed that the abundance of metals were in the order of residual > organic/sulfide > carbonate > Fe/Mn oxide > exchangeable fractions.  相似文献   

20.
Pulicat Lake, which is a shallow depression bordering the E Coast of India, represents the coastal waters having transitional characters between terrestrial and deep sea waters. The geochemical characterisation of major elements in Pulicat lake is discussed. It has been observed that the concentrations of different constituents (physical and chemical) in Pulicat lake waters are much higher during dry season and lower in monsson season than the normal sea waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号