首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张素芳 《地球物理学报》2009,52(9):2255-2263
目前人们利用4种基本的地震波现象研究地震各向异性,如横波双折射、面波散射、与传播方向有关的走时异常和PS转换波震相.本文利用面波散射产生的Quasi-Love(QL)波研究青藏高原上地幔顶部的各向异性结构特征.首先利用中国地震台网昌都(CAD)台记录的地震波形资料识别出产生QL波的路径,并利用合成地震记录和垂直偏振极性分析证实所观测到的为QL波,而不是高阶振型的Rayleigh波或其他体波震相;然后由Rayleigh波、Love波和QL波的群速度估算了各向异性结构横向变化的转换点;不同周期时,转换点的位置不同,这种频率依赖性还需要进一步的模拟研究.Love波向Rayleigh波耦合(产生QL波)的转换点位置揭示了青藏高原面波方位各向异性变化特征,并以南北向构造带的东西分段性、上地幔流引起的地球内力诱导岩石形变解释了青藏高原各向异性的东西向差异性.  相似文献   

2.
The elastic moduli of polycrystalline ringwoodite, (Mg0.91Fe0.09)2SiO4, were measured up to 470 K by means of the resonant sphere technique. The adiabatic bulk (KS) and shear (μ) moduli were found to be 185.1(2) and 118.22(6) GPa at room temperature, and the average slopes of dKS/dT and dμ/dT in the temperature range of the study were determined to be −0.0193(9) and −0.0148(3) GPa/K, respectively. Using these results, we estimate seismic wave velocity jumps for a pure olivine mantle model at 520 km depth. We find that the jump for the S-wave velocity is about 1.5 times larger than that for the P-wave velocity at this depth. This suggests that velocity jumps at the 520 km discontinuity are easier to detect using S-waves than P-waves.  相似文献   

3.
Records of deep-focus Hindu Kush earthquakes in the depth ranges 70–110 and 190–230 km made by 45 digital and analogue seismic stations were analyzed to study the attenuation field of short period seismic waves in the lithosphere of central Tien Shan. The dynamic characteristics studied include the ratio of peak amplitudes in S and P waves (S/P) and the ratio of the S-wave maximum to the coda level in the range t = 400 ± 5 s, where t is the lapse time (S/c400) for 1.25 Hz. Comparatively high values of S/P are shown to prevail in most of the area, corresponding to lower S-wave attenuation. Upon this background is a band of high and intermediate attenuation in the west of the area extending along the Talas-Fergana fault in the south and afterwards turning north-northeast. The rupture areas of the two largest (M ≥ 7.0) earthquakes which have occurred in Tien Shan during the last 25 years are confined to this band. Abnormally high values of S/c400 were obtained for stations situated in the rupture zone of the August 19, 1992, magnitude 7.3 Suusamyr earthquake and around it. For two of the stations we found considerable time variations in the coda envelope before the earthquake. The effective Q was derived from compressional and shear wave data for the entire area, as well as for the band of high attenuation. Comparison with previous data shows that the attenuation field in the area has changed appreciably during 20–25 years, which can only be due to a rearrangement of the fluid field in the crust and uppermost mantle. It is hypothesized that a large earthquake is very likely to occur in the northern part of the attenuating band.  相似文献   

4.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

5.
This paper advances new evidence for elastic anisotropy in the continental subcrustal lithosphere in southern Germany. The range of petrological models compatible with the observed azimuthal variation of seismic P-wave velocity is explored. The azimuthal distribution of amplitudes of mantle phases and the observed increase of P velocity with depth both indicate a continuation of anisotropy with depth together with an increase of preferred orientation. Even depletion of the upper mantle in basaltic components, as suggested by mantle xenoliths from various parts of Germany, cannot explain the velocity-depth and azimuthal amplitude observations without an increase of anisotropy with depth.Preferred orientation of olivine is the most likely mechanism for the observed phenomena. Its fast a-axis at the Moho level is directed towards N22.5°E. The b-axis is also required to be horizontal; i.e., the b-plane, one of the preferred glide planes of olivine, is vertical, with a strike of N22.5°E. Therefore, this preferred glide plane of olivine practically coincides with the plane of maximum horizontal shear stress deduced from fault-plane solutions of earthquakes in western Germany. This is a strong indication that the preferred orientation of olivine is formed in the recent West European crustal stress field leaking into the upper mantle. The distribution of velocities to a depth of at least 50 km requires slight horizontal rotation of the a-axis with depth by ~ 10° towards N32°E, and a change in the modal composition towards a depletion increasing with depth compatible with the composition of mantle xenoliths from western Germany. Further experiments are needed to substantiate this suggestion, which could lead to a better understanding of the interaction of crustal and upper-mantle stress-strain fields.  相似文献   

6.
Utilizing shear-wave (S-wave) data acquired with compressional waves (P-waves) is becoming more common as joint imaging and inversion techniques improve. Interest in S-waves radiated from vertical sources and buried explosives exploits conversion to P-waves as primary reflections (SP-waves) for reducing acquisition costs and for application to legacy data. However, recent investigations overstate the extent of SP-wave illumination and show isotropic processing results with narrow bandwidth frequency and wavenumber data. I demonstrate that illumination with SP-waves is limited in general to near vertical polar angles up to around 30° or 35° for VP/VS of 2 or 3, respectively. At greater angles, S-waves are typically in the P-wave evanescent range and cannot excite SP-wave reflections. Contrary to recent claims, these sources for P-wave do not radiate SH-waves polarized in horizontal planes in all azimuths. I show these properties for isotropic media with radiation expressions for amplitude derived in vector slowness coordinates. Also, I extend these expressions to transversely isotropic media with a vertical symmetry axis to show agreement with synthetic seismic data that only quasi SV-waves are radiated and become more narrowly focused towards 45°. Furthermore, in orthorhombic media, synthetic data show that fast S1- and slow S2-waves polarized parallel and perpendicular to fractures may appear as SV- and SH-waves. For the partially saturated fracture model studied here, S1-wave radiation has broader azimuthal illumination than slow S2-waves, which are more narrowly focused in azimuth. These produce SP-wave splitting signatures on vertical component reflection data that are nearly identical to PS-wave signatures on radial horizontal component data. Separating these fast and slow SP-waves is an additional processing challenge.  相似文献   

7.
A new method of reconstruction of the temperature profile in the lunar mantle from the velocities of seismic P- and S-waves for different models of chemical composition is developed. The procedure of the solution of an inverse problem is realized with the help of the minimization of the Gibbs free energy and the equations of state of a mantle substance, taking into account phase transformations, anharmonicity, and the effects of inelasticity. The geophysical and geochemical constraints on composition and temperature distribution in Moon’s mantle are established. The upper mantle can be composed of olivine pyroxenite, depleted by low-volatile oxides (∼2 wt % of CaO and Al2O3). On the contrary, the lower mantle must be enriched by low-volatile oxides (∼4–6 wt % of CaO and Al2O3). Its composition can be represented by a mineral association of the olivine + clinopyroxene + garnet or olivine + orthopyroxene + clinopyroxene + garnet type, which is close in composition to pyrolite. The temperature distribution at depths 50–1000 km are approximated by the equation: T(°C) = 351 + 1718[1–exp (−0.00082H)]. The constraints inferred make it possible to conclude that the published values of the velocities of P- and S-waves for the lunar mantle, obtained by processing the data of seismic experiments of the Apollo lunar mission are inconsistent with each other at depths below 300 km. Otherwise, the variations in the velocities of P- and S-waves disturb the symmetry between the petrological model (composition), the temperature profile, and the seismic profile.  相似文献   

8.
—A general relation linking the elasticity tensor of an anisotropic medium with that of the constituting single crystals and the function describing the orientation distribution of the crystals is derived. By expanding the orientation distribution function (ODF) into tensor spherical harmonics and using canonical components of the elasticity tensors, it is shown that the elastic tensor of the medium is completely determined by a finite number of expansion coefficients, namely those with harmonic degree l≤ 4. The number of expansion coefficients actually needed to determine the elastic constants of the medium depends on the symmetry of the single crystals. For hexagonal symmetry of the single crystals it is shown that only 8 real numbers are required to fix the 13 elastic constants which are for example needed to determine the azimuthal dependence of surface wave velocities. Thus, inversions of observations of seismic anisotropy are feasible which do not make any a priori assumptions on the orientation of the crystals. As a byproduct of the derivation, a formula is given which allows the easy calculation of the elastic constants of a medium composed of hexagonal crystals obeying an arbitrary ODF. An application of the theoretical results to the inversion of surface wave dispersion curves for an anisotropic 1D-mantle model is presented. For the S-wave velocities the results are similar to those of previous inversions but the new approach also yields P-wave velocities consistent with the assumption of oriented olivine. Moreover it provides a hint of the orientation distribution of the crystals.  相似文献   

9.
—We report on results of a passive seismic experiment undertaken to study the 3-D velocity structure and anisotropy of the upper mantle around the contact zone of the Saxothuringicum and Moldanubicum in the western margin of the Bohemian Massif in central Europe. Spatial variations of P-wave velocities and lateral variations of the particle motion of split shear waves over the region monitor changes of structure and anisotropy within the deep lithosphere and the asthenosphere. A joint interpretation of P-residual spheres and shear-wave splitting results in an anisotropic model of the lithosphere with high velocities plunging divergently from the contact of both tectonic units. Lateral variations of the mean residuals are related to a southward thickening of the lithosphere beneath the Moldanubicum.  相似文献   

10.
The P- and S-wave receiver functions and dispersion curves of the fundamental Rayleigh wave are used to study the lithosphere within the Central Anatolian Plateau. The results for eight broadband seismic stations are presented. It is established that within the plateau, the crust with a thickness of about 35 km is underlain by the mantle lid with its bottom at a depth of about 60 km. The velocities of longitudinal (Vp) and shear (Vs) waves in this layer are at most 7.6 and 4.5 km/s, respectively, and the Vp/Vs ratio is close to 1.7 (i.e., by 6% lower than in the standard IASP91 and PREM models). Such a low velocity ratio is characteristic of rocks having high orthopyroxene content. Beneath the high-velocity mantle lid, the S-wave velocity decreases to 4.0–4.2 km/s and the Vp/Vs ratio is close to its standard value (1.8). At most stations, the P-wave receiver functions do not contain seismic phase P410s, which is formed at the global seismic boundary at a depth of 410 km. The seismic boundary at a depth of 410 km is related to the olivine-spinel phase transformation, and its absence can indicate the anomalously low olivine content and high basalt content. This anomaly is probably associated with the subduction of a large amount of oceanic crust during the closure of the Tethys. The results of the study overall indicate the high informativity of the used method.  相似文献   

11.
—A tight array of seismographs spanning a 500 km traverse of southern Tibet resolved anisotropy from SKS with a spatial variation of its direction and an increase northward of the splitting delay, as well as of its first arrival residual. Both waves split by velocity anisotropy are slow relative to P and their waveform analysis may be interpreted to suggest attenuation anisotropy. The array here provides examples of residuals and splitting of other S waves which do not tightly conform to the anisotropy assumed in the simplest model of olivine of transverse isotropy with horizontal symmetry axis. S waves are also split, with parameters which vary along the array, and hence are relevant to near-receiver structure like those of SKS. Their splitting delay, for non-vertical incidence and polarization, appears larger than that for SKS. Residuals of S-wave first arrivals and splitting delays increase less northwards for S than SKS. Anisotropy with a slow vertical axis may account for these observations. Its origin may be related to horizontal shear or flow in low-velocity layers.  相似文献   

12.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

13.
Long-range seismic sounding carried out during the last few years on the territory of the U.S.S.R. has shown a basic inhomogeneity of the uppermost mantle, as well as evidence of regularities in the distribution of its seismic parameters. The following data were used: times and apparent velocities of P- and S-waves for investigation of mantle velocities, converted waves for seismic discontinuity model studies and wave attenuation for Q-factor estimation. Strong regularities were distinguished in the distribution of average seismic velocities for the uppermost mantle, in their dependence on the age and type of geostructure and on their position relative to the central part of the continent. Old platforms and the inner part of the continent are marked by velocities under the Mohorovi?i? discontinuity of more than 8.2–8.3 km s?1, young platforms and outer parts of the continent by 8.0–8.2 km s?1, and orogenic and rift zones by 7.8–8.0 km s?1. The difference becomes more pronounced at a depth of about 100–200 km: for the old platform mantle velocities of 8.5–8.6 km s?1 are typical; beneath the orogenic and rift areas, inversion zones with velocities less than 7.8 km s?1 are observed.The converted waves show fine inhomogeneities of the crust and uppermost mantle, the presence of many discontinuities with positive and negative changes of velocity, and anisotropy of seismic waves in some of the layers. Wave attenuation allowed the determination of the Q-factor in the mantle. It varied from one region to another but a close relation between Q and P-wave velocity is the main cause of its variation.  相似文献   

14.
—Reflectivity synthetic seismograms demonstrate that the type, layering and orientation of 1-D anisotropy influences strongly the coda of teleseismic P waves at periods T > 1 sec, particularly P-SH converted waves. We assume the simplest form of anisotropy described by an elastic tensor with a symmetry axis ? of arbitrary orientation. The resulting phase velocities vary as cos 2ξ with respect to that axis. Using three families of simple crustal models, we compare the effects of an anisotropic surface layer with reverberations caused by both "thick" and "thin" layers of anisotropy at depth. If anisotropy in the surface layer is significant, the polarization of direct P can be distorted to generate a transverse component, followed by Ps and a prominent shear reverberation converted from direct P at the free surface. If the anisotropic layer is buried, the first, and often the most prominent, arrival on the transverse component is the P-to-SH conversion at its upper surface. If the anisotropic layer is sufficiently thin, P-to-SH conversions from its boundaries interfere to form a derivative pulse shape on the transverse component, which could be mistaken as the signature of shear-wave splitting. If ? is horizontal, compressional (P) and shear (S) anisotropy both produce similar waveform perturbations with four-lobed azimuthal patterns, suggesting that a weighted stack of P coda from different back-azimuths would improve signal-to-noise. For ? tilted between the horizontal and vertical, however, the effects of P- and S-anisotropy differ greatly. The influence of P-anisotropy on P-to-S conversion is greatest for a symmetry axis tilted at 45° to the vertical, where its azimuthal pattern has two lobes, rather than four. Combinations of P- and S-anisotropy typically lead to a composite azimuthal dependence in the P-coda reverberations.  相似文献   

15.
Upper mantle low anisotropy channels below the Pacific Plate   总被引:1,自引:0,他引:1  
A new 3D anisotropic model has been obtained at a global scale by using a massive dataset of seismic surface waves. Though seismic heterogeneities are usually interpreted in terms of heterogeneous temperature field, a large part of lateral variations are also induced by seismic anisotropy of upper mantle minerals. New insight into convection processes can be gained by taking seismic anisotropy into account in the inversion procedure. The model is best resolved in the Pacific Plate, the largest and the most active tectonic plate. Superimposed on the large-scale radial (ξ parameter) and azimuthal anisotropy (of VSV velocity) within and below the lithosphere, correlated with present or past Pacific Plate motions, are smaller-scale (<1000 km) lateral variations of anisotropy not predicted by plate tectonics. Channels of low anisotropy down to a depth of 200 km (hereafter referred to as LAC) are observed and are the best resolved anomalies: one east-west channel between Easter Island and the Tonga-Kermadec subduction zones (observed on both radial and azimuthal anisotropies) and a second one (only observed on azimuthal anisotropy) extending from the south-west Pacific up to south-east Hawaii, and passing through the Polynesia hotspot group for plate older than about 40 Ma. These features provide strong constraints on the decoupling between the plate and asthenosphere. They are presumably related to cracking within the Pacific Plate and/or to secondary convection below the rigid lithosphere, predicted by numerical and analog experiments. The existence and location of these LACs might be related to the current active volcanoes and hotspots (possibly plumes) in the Central Pacific. LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of plates with ridge migrations in the Pacific Ocean.  相似文献   

16.
A Seismic Model of Casing Failure in Oil Fields   总被引:1,自引:0,他引:1  
—We develop a seismic model that characterises the sudden tensional failure of oil-well casings. The energy released by the rupture of a well casing is transformed into heat and seismic energy. The upper bound of the seismic efficiency of this process is estimated at about 3%. The static situation at the completion of a casing failure episode is modelled by calculating the static displacement field generated by two opposing forces separated by an arm. The azimuthal patterns of these displacements and the change in the strain and stress fields caused by the force couple are described. The dynamics of the failure episode are modelled as a dipole with a seismic moment equivalent to the product of the average drop in shear stress, the failure surface, and an arm. The radiated P and S waves have mean-square radiation pattern coefficients of 1/5 for P waves and 2/15 for S waves. The displacement field as a function of time during rupture and the spectral properties in the far field are derived. The most promising seismic parameters that can be used for distinguishing between casing failure events and other possible events are polarisation properties of S waves and S/P amplitude ratios. S-wave polarisation distinguishes between shear events and casing failure events. S/P amplitude ratios distin guish between tensile events and casing failure events.  相似文献   

17.
A layeredP- andS-wave velocity model is obtained for the Friuli seismic area using the arrival time data ofP- andS-waves from local earthquakes. A damped least-squares method is applied in the inversion.The data used are 994P-wave arrival times for 177 events which have epicenters in the region covered by the Friuli seismic network operated by Osservatorio Geofisico sperimentale (OGS) di Trieste, which are jointly inverted for the earthquake hypocenters andP-wave velocity model. TheS-wave velocity model is estimated on the basis of 978S-wave arrival times and the hypocenters obtained from theP-wave arrival time inversion. We also applied an approach thatP- andS-wave arrival time data are jointly used in the inversion (Roecker, 1982). The results show thatS-wave velocity structures obtained from the two methods are quite consistent, butP-wave velocity structures have obvious differences. This is apparent becauseP-waves are more sensitive to the hypocentral location thanS-waves, and the reading errors ofS-wave arrival times, which are much larger than those ofP-waves, bring large location errors in the joint inversion ofP- andS-wave arrival time. The synthetic data tests indicated that when the reading errors ofS-wave arrivals are larger than four times that ofP-wave arrivals, the method proposed in this paper seems more valid thanP- andS-wave data joint inversion. Most of the relocated events occurred in the depth range between 7 and 11 km, just above the biggest jump in velocity. This jump might be related to the detachment line hypothesized byCarulli et al. (1982). From the invertedP- andS-wave velocities, we obtain an average value 1.82 forV p /V s in the first 16 km depth.  相似文献   

18.
Wave Generation from Explosions in Rock Cavities   总被引:1,自引:0,他引:1  
—?We have developed a measurement method to monitor P- and S-waves generated from laboratory-scale explosions in meter-sized rock samples at a series of stations, as well as invented a device to drill spherical cavities in rock, with diameters up to 10?centimeters. We applied these to experiments in Bedford limestone in which spherical/cylindrical explosives (0.2 to 1.9?g) were centrally placed in 1.2- to 3-cm diameter cavities. Stress waves generated by the explosions were recorded within a radius of 25?cm. The radial stress wave records and post-explosion studies demonstrate that S-waves are generated from explosions in cavities as a result of both wave mode-conversion from the cavity wall and crack propagation in rocks. The experimental results of wave generation from the explosions in spherical and cylindrical cavities demonstrate the cavity geometrical effect on the resulting wave pattern. The P- and S-waves generated by explosions and crack propagation in rocks are analyzed. A simple analytic model for P-wave generation is proposed to explain the differences of P-wave-induced displacement histories between the observed waveforms and those predicted by a step-pressure source. Generally, the qualitative predictions of this model fit the observations. The present results demonstrate the importance of rock cracking and cavities in P- and S-wave generation.  相似文献   

19.
It has been hypothesised that seismic and electrical anisotropy at the base of the lithosphere are caused by strain-induced lattice-preferred orientation (LPO) of olivine [100] axes parallel to present-day plate motion. This would imply that seismic and electrical anisotropy observations can provide geodynamicists with fundamental information for characterising mantle flow. The qualitative agreement between the fast direction of SV-waves and direction of maximum electrical conductance modelled deeper than 150 km below the North Central craton of Australia appear to support a common alignment mechanism, and the observed, anisotropic electrical conductances can be generated by hydrogen diffusivity in a water-poor (<1000 ppm H/Si) olivine mantle. A quantitative test is proposed for the hypothesis that electrical anisotropy is generated by anisotropic hydrogen diffusion rates (D) in olivine. Electrical anisotropy factors are computed using random resistor network models assuming that D[100]≈20×D[010]≈40×D[001]. Electrical and seismic anisotropies calculated from olivine LPO angular distribution functions modelled for a range of shear strains under a simple shear deformation demonstrate that the intensity of olivine [100] alignments (and associated shear strains) that would be required to explain the electrical anisotropy in the mantle below central Australia are significantly greater than predicted by Rayleigh wave anisotropies. The poor agreement between the observed electrical anisotropies and the electrical anisotropies that would be predicted from the Rayleigh wave anisotropies indicates that either (i) electrical anisotropy in the upper mantle below central Australia is not generated by hydrogen diffusivity alone or (ii) the seismic anisotropy is underestimated. The orientation of the olivine [100] axes maxima is inferred to be ∼30° rotated relative to the direction of present-day absolute plate motion (APM) that is determined relative to the hotspot reference frame (HS2-NUVEL1). Both the APM direction that is determined relative to a reference frame defined by requiring no-net rotation of the lithosphere (NNR-NUVEL1) and GPS-derived plate motion vectors fit the geophysical observations of upper mantle anisotropy better. This may support the contention that hotspots are not stationary relative to the deep mantle.  相似文献   

20.
Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号