首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The spatial and temporal distribution of humic substances in aquatic ecosystems can have important effects on ecosystem productivity, negatively impacting primary productivity while positively impacting secondary productivity. In the present investigation, a large shallow lake ecosystem was studied to determine the spatial and seasonal variation of the composition and concentration of humic substances. Concentrations of total dissolved organic matter, humic acid, and fulvic acid were found to display significant spatial distributions (1.3…13.5 mg/L, DOM; 0.1…5.4 mg/L, HA). The distribution is described by using mapping techniques and the analysis of the spatial distribution of the lake. An analysis of the seasonal variations also indicated the dependence of the occurrence of these compounds on meteorological and hydrological conditions. To identify the potential sources of these organic materials, an analysis was made of the ratio of humic and fulvic acid fractions and total DOM. It was found that areas of high DOM concentration coincided with the areas of highest HA percentage of total DOM. Furthermore using the ratio of the normalised concentrations of HA, FA, and residual DOM (< 5000 g/mol) it was found that areas dominated by each are spatially distinct. This confirms the hypothesis that in these shallow lakes, photodegradation and bacterioplankton activity will create a residence time dependent zonation of each component of the total DOM.  相似文献   

2.
The reduction in light emission of the marine bacterium Vibrio fischeri used in the standard Microtox® bioassay was measured for the metals copper and mercury. The concentration at which the light emission was reduced by 50% (EC50) was determined to be (3.43 ± 0.83) μmol/L for Cu2+ and (0.66 ± 0.01) μmol/L for Hg2+. The reduction of the toxicity of these metals by humic and fulvic acids were studied using IHSS Standard and Reference Materials. Copper toxicity was reduced 17...20% by the soil and peat fulvic acids and 9...20% by the aquatic fulvic acids. While there appeared to be little difference in the reduction of Cu toxicity by fulvic acids from soils, peats, or aquatic systems, Hg toxicity was reduced 3.6...7.3% by the soils and peats, while aquatic fulvic acids reduced Hg toxicity 14...16%. Soil fulvic acids appear to have significantly less capacity to reduce Hg toxicity than Cu toxicity. Humic acids had much higher reductions of Cu toxicity (44...124%) compared to the fulvic acids, with little difference between aquatic and soil or peat humic acids, 44...124% and 67...100%, respectively. However, humic and fulvic acids, regardless of origin, had approximately the same effect on Hg toxicity with 3.5...16% reduction by fulvic acids and 8...20% reduction by humic acids. Unlike the fulvic acids, no clear trend was observed relative to origin of the humic acids. There was no correlation between percent reduction of Cu or Hg toxicity by the organic compounds and copper binding capacity (CuBC), C/N ratio, or carboxyl content of the materials. Examination of natural organic matter (NOM) isolated by reverse osmosis techniques from three water sources had reductions of both Cu and Hg toxicity that were most similar to the Suwannee River and Nordic fulvic acids.  相似文献   

3.
The organic composition and organic‐inorganic interaction in paper mill sludge (PS) solvent extracts (hexane, ethyl acetate, acetone and ethanol) and humic fractions, humic acid (HA) and humin (HU) were studied by electron paramagnetic resonance spectroscopy (EPR), proton and carbon‐13 nuclear magnetic resonance spectroscopy (1H NMR; 13C NMR), Fourier‐transformed infrared spectroscopy (FTIR), and ultraviolet‐visible spectroscopy (UV‐vis). The strategy of fractionating the PS, sequentially, with organic solvents of increasing polarity is a reliable analytical procedure for humic substance sample separation because it results in more purified fractions. FTIR, 1H NMR and 13C NMR results showed that hexane extract consisted mainly of aliphatic hydrocarbon structures. Their contents in the extracts decreased as the polarity of the extracting solvent increased and the content of oxygen functional groups increased. Carboxylic and carboxylate functional groups were found in the acetone extract, and ester and ether functions were predominantly found in the ethanol extract. EPR spectra revealed some Fe3+ complexes with rhombic structure (g1 = 4.3; g2 = 9.0) in the humic fractions and in all solvent extracts, except hexane. Quasi‐octahedral Fe3+ complexes (g = 2.3; ΔHpp ≤ 400 G) were found in the HU fraction and in the acetone extract. The organic free radical content in the HA fraction was higher than the non‐fractionated PS sample and HU fraction.  相似文献   

4.
Sixteen samples of fulvic acids and XAD‐4 fractions of riverine, estuarine, coastal, and open ocean origin have been studied by emission and synchronous molecular fluorescence spectroscopy. Certain features of the molecular fluorescence are related to the nature, the content, and the origin of those aquatic humic substances (HS). Riverine HS appear several times richer in fluorophores than marine HS, which can be well observed by emission fluorescence spectroscopy. Synchronous‐scan spectra of fulvic acids and of XAD‐4 fractions from the aquatic environments studied, emphasized the quality differences of their fluorophores. These features are useful as tracers of humic substances related with their natural environment source or even with their anthropogenic origin.  相似文献   

5.
Humic substances (HS) were isolated from two contaminated groundwater samples (B22 and B53) from a site of a former gas facility. The isolation yielded almost only the fulvic acid fractions (FA). For characterization spectroscopic (UV, fluorescence) and chromatographic techniques (hydrophobic interaction chromatography – HIC as well as size-exclusion chromatography – SEC) were applied. The sample designated B22 FA was collected from the contamination plume whereas the sample B53 FA was collected downstream. Distinct differences were exhibited by these samples. The UV and fluorescence spectra as well as the HIC and SEC chromatograms of the B53 FA sample resemble those of the FA fraction obtained from natural water (groundwater, bog). The HIC and SEC chromatograms reveal the presence of organic compounds in B22 FA which can be derived from coal tar contaminants or their metabolites. Some of the compounds can be extracted from the FA fraction with non-polar organic solvents indicating adsorptive forces between the contaminants and the FA fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号